예제 #1
0
 def __init__(self, features_dim: int):
     """
     Args:
         features_dim: size of the output tensor
     """
     super(SimpleConv, self).__init__()
     self._net = nn.Sequential(
         nn.Conv2d(1, 32, 3, 1),
         nn.ReLU(),
         nn.Conv2d(32, 64, 3, 1),
         nn.ReLU(),
         nn.MaxPool2d(2),
         Flatten(),
         nn.Linear(9216, 128),
         nn.ReLU(),
         nn.Linear(128, features_dim),
         Normalize(),
     )
예제 #2
0
 def __init__(self, out_features: int, normalize: bool = True):
     """
     Args:
         out_features: size of the output tensor
     """
     super().__init__()
     layers = [
         nn.Conv2d(1, 32, 3, 1),
         nn.ReLU(),
         nn.Conv2d(32, 64, 3, 1),
         nn.ReLU(),
         nn.MaxPool2d(2),
         Flatten(),
         nn.Linear(9216, 128),
         nn.ReLU(),
         nn.Linear(128, out_features),
     ]
     if normalize:
         layers.append(Normalize())
     self._net = nn.Sequential(*layers)
예제 #3
0
파일: model.py 프로젝트: zkid18/catalyst
 def __init__(self, num_hidden1=128, num_hidden2=64):
     """
     Args:
         num_hidden1: size of the first hidden representation
         num_hidden2: size of the second hidden representation
     """
     super().__init__()
     self.conv_net = nn.Sequential(
         nn.Conv2d(1, 32, 3, 1),
         nn.ReLU(),
         nn.Conv2d(32, 64, 3, 1),
         nn.ReLU(),
         nn.MaxPool2d(2),
         Flatten(),
     )
     self.linear_net = nn.Sequential(
         nn.Linear(9216, num_hidden1),
         nn.ReLU(),
         nn.Linear(num_hidden1, num_hidden2),
         Normalize(),
     )
     self._net = nn.Sequential(self.conv_net, self.linear_net)