def _priority(self, priority_order, facet_domains):
        if len(priority_order) == 0:
            ds = [Measure("ds")]
            bcs = [None]
            return ds, bcs

        ds = Measure("ds")[facet_domains]
        unprioritized = list(
            set(np.unique(facet_domains.array())) - set(priority_order))
        unprioritized = gather(unprioritized, 0)
        unprioritized = np.unique(np.array(unprioritized))
        unprioritized = broadcast(unprioritized, 0)
        unprioritized = unprioritized.astype(np.int)

        _ds = []
        if len(unprioritized) > 0:
            nds = ds(unprioritized[0])
            for i in unprioritized[1:]:
                nds += ds(i)
            _ds.append(nds)
        _ds += [ds(i) for i in priority_order]

        bcs = [
            DirichletBC(V, Constant((0, ) * V.num_sub_spaces()), facet_domains,
                        i) for i in priority_order
        ]
        if len(unprioritized) > 0:
            bcs = [None] + bcs

        return _ds, bcs
예제 #2
0
    def compute(self, get):
        # Get field to probe
        u = get(self.valuename)

        # Evaluate in all points
        self.probes(u)

        # Fetch array with probe values at this timestep
        #results = self.probes.array(self._probetimestep)
        results = self.probes.array()

        if MPI.rank(mpi_comm_world()) != 0:
            results = np.array([], dtype=np.float_)

        if results.shape == ():
            results = results.reshape(1,)

        # Broadcast array to all processes
        if self.params.broadcast_results:
            results = broadcast(results, 0)

        self.probes.clear()

        # Return as list to store without 'array(...)' text.
        if u.value_rank() > 0:
            if len(results.shape) == 1:
                return list(results)
            return list(tuple(res) for res in results)
        elif results.size == 1:
            return float(results)
        else:
            return list(results)
예제 #3
0
def create_submesh(mesh, markers, marker):
    "This function allows for a SubMesh-equivalent to be created in parallel"
    # Build mesh
    submesh = Mesh()
    mesh_editor = MeshEditor()
    mesh_editor.open(submesh,
                     mesh.ufl_cell().cellname(),
                     mesh.ufl_cell().topological_dimension(),
                     mesh.ufl_cell().geometric_dimension())

    # Return empty mesh if no matching markers
    if MPI.sum(mpi_comm_world(), int(marker in markers.array())) == 0:
        cbc_warning(
            "Unable to find matching markers in meshfunction. Submesh is empty."
        )
        mesh_editor.close()
        return submesh

    base_cell_indices = np.where(markers.array() == marker)[0]
    base_cells = mesh.cells()[base_cell_indices]
    base_vertex_indices = np.unique(base_cells.flatten())

    base_global_vertex_indices = sorted(
        [mesh.topology().global_indices(0)[vi] for vi in base_vertex_indices])

    gi = mesh.topology().global_indices(0)
    shared_local_indices = set(base_vertex_indices).intersection(
        set(mesh.topology().shared_entities(0).keys()))
    shared_global_indices = [gi[vi] for vi in shared_local_indices]

    unshared_global_indices = list(
        set(base_global_vertex_indices) - set(shared_global_indices))
    unshared_vertices_dist = distribution(len(unshared_global_indices))

    # Number unshared vertices on separate process
    idx = sum(unshared_vertices_dist[:MPI.rank(mpi_comm_world())])
    base_to_sub_global_indices = {}
    for gi in unshared_global_indices:
        base_to_sub_global_indices[gi] = idx
        idx += 1

    # Gather all shared process on process 0 and assign global index
    all_shared_global_indices = gather(shared_global_indices,
                                       on_process=0,
                                       flatten=True)
    all_shared_global_indices = np.unique(all_shared_global_indices)

    shared_base_to_sub_global_indices = {}
    idx = int(
        MPI.max(mpi_comm_world(),
                float(max(base_to_sub_global_indices.values() + [-1e16]))) + 1)
    if MPI.rank(mpi_comm_world()) == 0:
        for gi in all_shared_global_indices:
            shared_base_to_sub_global_indices[int(gi)] = idx
            idx += 1

    # Broadcast global numbering of all shared vertices
    shared_base_to_sub_global_indices = dict(
        zip(broadcast(shared_base_to_sub_global_indices.keys(), 0),
            broadcast(shared_base_to_sub_global_indices.values(), 0)))

    # Join shared and unshared numbering in one dict
    base_to_sub_global_indices = dict(
        base_to_sub_global_indices.items() +
        shared_base_to_sub_global_indices.items())

    # Create mapping of local indices
    base_to_sub_local_indices = dict(
        zip(base_vertex_indices, range(len(base_vertex_indices))))

    # Define sub-cells
    sub_cells = [None] * len(base_cells)
    for i, c in enumerate(base_cells):
        sub_cells[i] = [base_to_sub_local_indices[j] for j in c]

    # Store vertices as sub_vertices[local_index] = (global_index, coordinates)
    sub_vertices = {}
    for base_local, sub_local in base_to_sub_local_indices.items():
        sub_vertices[sub_local] = (base_to_sub_global_indices[
            mesh.topology().global_indices(0)[base_local]],
                                   mesh.coordinates()[base_local])

    ## Done with base mesh

    # Distribute meshdata on (if any) empty processes
    sub_cells, sub_vertices = distribute_meshdata(sub_cells, sub_vertices)
    global_cell_distribution = distribution(len(sub_cells))
    #global_vertex_distribution = distribution(len(sub_vertices))

    global_num_cells = MPI.sum(mpi_comm_world(), len(sub_cells))
    global_num_vertices = sum(unshared_vertices_dist) + MPI.sum(
        mpi_comm_world(), len(all_shared_global_indices))

    mesh_editor.init_vertices(len(sub_vertices))
    #mesh_editor.init_cells(len(sub_cells))
    mesh_editor.init_cells_global(len(sub_cells), global_num_cells)
    global_index_start = sum(
        global_cell_distribution[:MPI.rank(mesh.mpi_comm())])

    for index, cell in enumerate(sub_cells):
        if LooseVersion(dolfin_version()) >= LooseVersion("1.6.0"):
            mesh_editor.add_cell(index, *cell)
        else:
            mesh_editor.add_cell(int(index), global_index_start + index,
                                 np.array(cell, dtype=np.uintp))

    for local_index, (global_index, coordinates) in sub_vertices.items():
        #print coordinates
        mesh_editor.add_vertex_global(int(local_index), int(global_index),
                                      coordinates)

    mesh_editor.close()

    submesh.topology().init(0, len(sub_vertices), global_num_vertices)
    submesh.topology().init(mesh.ufl_cell().topological_dimension(),
                            len(sub_cells), global_num_cells)

    # FIXME: Set up shared entities
    # What damage does this do?
    submesh.topology().shared_entities(0)[0] = []
    # The code below sets up shared vertices, but lacks shared facets.
    # It is considered incomplete, and therefore commented out
    '''
    #submesh.topology().shared_entities(0)[0] = []
    from dolfin import compile_extension_module
    cpp_code = """
    void set_shared_entities(Mesh& mesh, std::size_t idx, const Array<std::size_t>& other_processes)
    {
        std::set<unsigned int> set_other_processes;
        for (std::size_t i=0; i<other_processes.size(); i++)
        {
            set_other_processes.insert(other_processes[i]);
            //std::cout << idx << " --> " << other_processes[i] << std::endl;
        }
        //std::cout << idx << " --> " << set_other_processes[0] << std::endl;
        mesh.topology().shared_entities(0)[idx] = set_other_processes;
    }
    """

    set_shared_entities = compile_extension_module(cpp_code).set_shared_entities
    base_se = mesh.topology().shared_entities(0)
    se = submesh.topology().shared_entities(0)

    for li in shared_local_indices:
        arr = np.array(base_se[li], dtype=np.uintp)
        sub_li = base_to_sub_local_indices[li]
        set_shared_entities(submesh, base_to_sub_local_indices[li], arr)
    '''
    return submesh
예제 #4
0
def duplicate_meshfunction(mf, new_mesh):
    "Duplicate meshfunction defined on a different mesh"
    # Rebuild meshfunction
    mesh = mf.mesh()
    dim = mf.dim()

    if isinstance(mf, MeshFunctionSizet):
        f = MeshFunction("size_t", new_mesh, dim)
        dtype = np.uintp
    elif isinstance(mf, MeshFunctionDouble):
        f = MeshFunction("double", new_mesh, dim)
        dtype = np.float_
    elif isinstance(mf, MeshFunctionBool):
        f = MeshFunction("bool", new_mesh, dim)
        dtype = np.bool
    elif isinstance(mf, MeshFunctionInt):
        f = MeshFunction("int", new_mesh, dim)
        dtype = np.int

    # Midpoint of old mesh
    connectivity = mesh.topology()(dim, 0)().reshape(mesh.num_entities(dim),
                                                     -1)
    midpoints = np.mean(mesh.coordinates()[connectivity], axis=1)
    indices = np.lexsort(midpoints.T[::-1])

    sorted_midpoints = midpoints[indices]
    values = mf.array()[indices]

    gdim = midpoints.shape[1]
    sorted_midpoints = sorted_midpoints.flatten()
    sorted_midpoints = gather(sorted_midpoints, 0)
    sorted_midpoints = np.hstack(sorted_midpoints).flatten()

    sorted_midpoints = broadcast(sorted_midpoints, 0)
    _sorted_midpoints = []

    i = 0
    for arr in sorted_midpoints:
        _sorted_midpoints.append(arr)
    sorted_midpoints = np.reshape(sorted_midpoints, newshape=(-1, gdim))
    values = gather(values, 0)
    values = np.hstack(values).flatten()

    values = broadcast(values, 0)

    # Workaround for bug in np.uint64
    if dtype == np.uintp:
        M = max(values)
        if M == dtype(-1):

            values[values == M] = -1

    values = values.astype(dtype)
    _values = []
    for arr in values:
        _values.append(arr)
    values = np.array(_values, dtype=dtype)

    indices = np.lexsort(sorted_midpoints.T[::-1])
    values = values[indices]
    sorted_midpoints = sorted_midpoints[indices]

    # Now has full list of midpoint+values on all processes

    # Sort midpoints on new mesh on current process
    connectivity = new_mesh.topology()(dim,
                                       0)().reshape(new_mesh.num_entities(dim),
                                                    -1)
    midpoints = np.mean(new_mesh.coordinates()[connectivity], axis=1)
    indices = np.lexsort(midpoints.T[::-1])
    midpoints = midpoints[indices]

    idx = 0
    omp = sorted_midpoints[idx]
    tol = 1e-8

    for i, mp in enumerate(midpoints):
        for j in xrange(gdim):
            while omp[j] < mp[j] - tol:
                idx += 1
                omp[:] = sorted_midpoints[idx]
        f[int(indices[i])] = values[idx]

    return f
예제 #5
0
def compute_connectivity(mesh, cell_connectivity=True):
    """Compute connected regions of mesh.
    Regions are considered connected if they share a vertex through an edge.
    """
    # Compute first vertex connectivity (defined by sharing edges)
    mesh.init(0,1)
    regions = VertexFunction("size_t", mesh)
    regions.set_all(0)
    i = 0

    while True:
        i += 1

        unset = np.where(regions.array()==0)[0]
        if len(unset) == 0:
            break
        start = unset[0]
        tic()
        connectivity = _compute_connected_vertices(mesh, start)
        regions.array()[connectivity.array()] = i

    dist = distribution(np.max(regions.array()))

    # Make all regions separate (regions on different processes are currently considered disjoint)
    regions.array()[:] += np.sum(dist[:MPI.rank(mesh.mpi_comm())])

    # Find global indices of all vertices shared by more than one process
    global_indices = mesh.topology().global_indices(0)
    se = mesh.topology().shared_entities(0)

    gi_local = np.array([global_indices[i] for i in se.keys()])
    #mapping = dict(zip(gi_local,se.keys()))
    gi = gather(gi_local, 0)
    gi = np.hstack(gi).flatten()
    gi = broadcast(gi, 0)

    # gi is now common on all processes

    # Connect disjointed regions through shared vertices
    while True:
        v = regions.array()[se.keys()]
        d = dict(zip(gi_local,v))
        shift = dict()

        for gidx in gi:
            #lidx = mapping.get(gidx, -1)
            this_v = d.get(gidx, np.inf)
            v = int(MPI.min(mesh.mpi_comm(), float(this_v)))
            if this_v == v or this_v == np.inf:
                continue
            shift[this_v] = v

        # Check if no shift is needed, and if so, break
        no_shift = bool(int(MPI.min(mesh.mpi_comm(), float(int(shift==dict())))))
        if no_shift:
            break

        for k,v in shift.items():
            regions.array()[regions.array()==k] = v

        # Condense regions, so that M == number of regions
        M = int(MPI.max(mesh.mpi_comm(), float(np.max(regions.array()))))
        values = np.unique(regions.array())
        for i in range(1,M+1):
            has_value = MPI.max(mesh.mpi_comm(), float(i in values))
            if has_value == 0:
                regions.array()[regions.array()>i] -= 1
                values = np.unique(regions.array())

    if cell_connectivity:
        cf = CellFunction("size_t", mesh)
        cf.set_all(0)
        cells = mesh.cells()[:,0]
        cf.array()[:] = regions.array()[cells]

        regions = cf

    return regions
def restriction_map(V, Vb, _all_coords=None, _all_coordsb=None):
    "Return a map between dofs in Vb to dofs in V. Vb's mesh should be a submesh of V's Mesh."
    if V.ufl_element().family(
    ) == "Discontinuous Lagrange" and V.ufl_element().degree() > 0:
        raise RuntimeError(
            "This function does not work for DG-spaces of degree >0 \
                           (several dofs associated with same point in same subspace)."
        )

    if V.ufl_element().family() != "Lagrange":
        cbc_warning("This function is only tested for CG-spaces.")
    assert V.ufl_element().family() == Vb.ufl_element().family(
    ), "ufl elements differ in the two spaces"
    assert V.ufl_element().degree() == Vb.ufl_element().degree(
    ), "ufl elements differ in the two spaces"
    assert V.ufl_element().cell() == Vb.ufl_element().cell(
    ), "ufl elements differ in the two spaces"

    D = V.mesh().geometry().dim()

    # Recursively call this function if V has sub-spaces
    if V.num_sub_spaces() > 0:
        mapping = {}
        if MPI.size(mpi_comm_world()) == 1:
            if _all_coords is None:
                try:
                    # For 1.6.0+ and newer
                    all_coords = V.tabulate_dof_coordinates().reshape(
                        V.dim(), D)
                    all_coordsb = Vb.tabulate_dof_coordinates().reshape(
                        Vb.dim(), D)
                except:
                    # For 1.6.0 and older
                    all_coords = V.dofmap().tabulate_all_coordinates(
                        V.mesh()).reshape(V.dim(), D)
                    all_coordsb = Vb.dofmap().tabulate_all_coordinates(
                        Vb.mesh()).reshape(Vb.dim(), D)
            else:
                all_coords = _all_coords
                all_coordsb = _all_coordsb
        else:
            all_coords = None
            all_coordsb = None
        for i in range(V.num_sub_spaces()):
            mapping.update(
                restriction_map(V.sub(i), Vb.sub(i), all_coords, all_coordsb))

        return mapping

    dm = V.dofmap()
    dmb = Vb.dofmap()

    N = len(dm.dofs())
    Nb = len(dmb.dofs())

    dofs = dm.dofs()

    # Extract coordinates of dofs
    if dm.is_view():
        if _all_coords is not None:
            coords = _all_coords[V.dofmap().dofs()]
        else:
            try:
                # For 1.6.0+ and newer
                coords = V.collapse().tabulate_dof_coordinates().reshape(N, D)
            except:
                # For 1.6.0 and older
                coords = V.collapse().dofmap().tabulate_all_coordinates(
                    V.mesh()).reshape(N, D)

        if _all_coordsb is not None:
            coordsb = _all_coordsb[Vb.dofmap().dofs()]
        else:
            try:
                # For 1.6.0+ and newer
                coordsb = Vb.collapse().tabulate_dof_coordinates().reshape(
                    Nb, D)
            except:
                # For 1.6.0 and older
                coordsb = Vb.collapse().dofmap().tabulate_all_coordinates(
                    Vb.mesh()).reshape(Nb, D)
    else:
        if LooseVersion(dolfin_version()) > LooseVersion("1.6.0"):
            # For 1.6.0+ and newer
            coords = V.tabulate_dof_coordinates().reshape(N, D)
            coordsb = Vb.tabulate_dof_coordinates().reshape(Nb, D)
        else:
            # For 1.6.0 and older
            coords = V.dofmap().tabulate_all_coordinates(V.mesh()).reshape(
                N, D)
            coordsb = Vb.dofmap().tabulate_all_coordinates(Vb.mesh()).reshape(
                Nb, D)

    # Build KDTree to compute distances from coordinates in base
    kdtree = KDTree(coords)
    eps = 1e-12

    mapping = {}
    request_dofs = np.array([])

    distances, indices = kdtree.query(coordsb)

    for i, subdof in enumerate(dmb.dofs()):
        # Find closest dof in base
        #d, idx = kdtree.query(coordsb[i])
        d, idx = distances[i], indices[i]
        if d < eps:
            # Dof found on this process, add to map
            dof = dofs[idx]
            assert subdof not in mapping
            mapping[subdof] = dof
        else:
            # Search for this dof on other processes
            add_dofs = np.hstack(([subdof], coordsb[i]))
            request_dofs = np.append(request_dofs, add_dofs)

    del distances
    del indices

    # Scatter all dofs not found on current process to all processes
    all_request_dofs = [None] * MPI.size(mpi_comm_world())
    for j in xrange(MPI.size(mpi_comm_world())):
        all_request_dofs[j] = broadcast(request_dofs, j)

    # Re-order all requested dofs
    # Remove items coming from this process
    all_request_dofs[MPI.rank(mpi_comm_world())] = []
    all_request_dofs = np.hstack(all_request_dofs)

    all_request_dofs = all_request_dofs.reshape(
        len(all_request_dofs) / (D + 1), D + 1)
    all_request_dofs = dict(
        zip(all_request_dofs[:, 0], all_request_dofs[:, 1:]))

    # Search this process for all dofs not found on same process as subdof
    for subdof, coordsbi in all_request_dofs.items():
        subdof = int(subdof)

        # Find closest dof in base
        d, idx = kdtree.query(coordsbi)
        if d < eps:
            # Dof found on this process, add to map
            dof = dofs[idx]
            assert subdof not in mapping
            mapping[subdof] = dof
    return mapping
예제 #7
0
    def solve(self, problem, timer):
        assert isinstance(problem, FSIProblem)

        mesh = problem.mesh
        bmesh = BoundaryMesh(mesh, "exterior")

        dim = mesh.geometry().dim()

        dx = problem.dx
        ds = problem.ds

        n = FacetNormal(mesh)

        dt, timesteps, start_timestep = compute_regular_timesteps(problem)
        dt = Constant(dt)
        t = Constant(timesteps[start_timestep], name="TIME")

        # Function spaces
        spaces = NSSpacePoolSplit(mesh, self.params.u_degree,
                                  self.params.p_degree)
        V = spaces.V
        Q = spaces.Q
        D = spaces.spacepool.get_custom_space("CG", 1, (dim, ))

        Db = spaces.spacepool.get_custom_space("CG", 1, (dim, ), boundary=True)
        Dgb = spaces.spacepool.get_custom_space("CG",
                                                1, (dim, ),
                                                boundary=True)

        # Trial- and testfunctions
        u, v = TrialFunction(V), TestFunction(V)  # Velocity
        p, q = TrialFunction(Q), TestFunction(Q)  # Pressure
        eta, x = TrialFunction(Dgb), TestFunction(Dgb)  # Boundary displacement
        d, e = TrialFunction(D), TestFunction(D)  # Mesh displacement

        # Solution functions
        U = Function(V)  # Velocity
        P = Function(Q)  # Pressure
        DF = Function(D)  # Fluid (full mesh) displacement

        # Helper functions
        U1 = Function(V)
        U2 = Function(V)
        DF1 = Function(D)
        DF2 = Function(D)
        ETA1 = Function(Dgb)  # eta time derivatives

        Uext = Extrapolation(V, self.params.r)  # Velocity extrapolation
        Pext = Extrapolation(Q, self.params.s)  # Pressure extrapolation
        phi = p - Pext
        phiext = Extrapolation(Q, self.params.r)
        DFext = Extrapolation(D, self.params.s)
        DFext1, DFext2 = Function(D), Function(D)
        w = Function(D)
        db = Function(Db)
        dgb = Function(Dgb)
        dgb1, dgb2 = Function(Dgb), Function(Dgb)
        traction = Function(Dgb)

        # Get functions for data assimilation
        observations = problem.observations(spaces, t)
        controls = problem.controls(spaces)

        # Make scheme-specific representation of bcs
        bcs = problem.boundary_conditions(spaces, U, P, t, None)
        bcu = make_velocity_bcs(problem, spaces, bcs)
        bcp = make_pressure_bcs(problem, spaces, bcs)

        bcs_eta = [DirichletBC(D, DF, DomainBoundary())
                   ]  # Are these for eta or full (fluid) mesh displacement?
        bcs_eta += [
            DirichletBC(D, expr, problem.facet_domains, i)
            for expr, i in bcs[2]
        ]

        # Dgb defined in bdry_mesh, facet domains on mesh
        # Create a facet
        dgb_mesh = Dgb.mesh()
        dgb_dim = dgb_mesh.topology().dim()
        eta_boundaries = MeshFunction('size_t', dgb_mesh, dgb_dim - 1)
        eta_boundaries.set_all(0)
        Left().mark(eta_boundaries, 1)
        Right().mark(eta_boundaries, 2)
        #plot(eta_boundaries, interactive=True)
        #embed()
        #sys.exit()

        #bcs_shell = [DirichletBC(Dgb, expr, DomainBoundary(), method="pointwise") for expr, i in bcs[2]] # really for eta
        #shellbc1 = DirichletBC(Dgb, Constant((0, 0)), eta_boundaries, 1, method="pointwise")
        #shellbc2 = DirichletBC(Dgb, Constant((0, 0)), eta_boundaries, 2, method="pointwise")
        shellbc1 = DirichletBC(Dgb, Constant((0, 0)), eta_boundaries, 1)
        shellbc2 = DirichletBC(Dgb, Constant((0, 0)), eta_boundaries, 2)
        bcs_shell = [shellbc1, shellbc2]
        #embed()
        #sys.exit()

        # Create boundary integrals over structure and non-structure part of mesh
        # nds = non-fixed part of boundary
        # fds = fixed part of boundary (has bcs for displacement)
        fixed_boundaries = [i for _, i in bcs[2]]  # bc2 is bceta
        nonfixed_boundaries = list(
            set(np.unique(problem.facet_domains.array())) -
            set(fixed_boundaries))
        nonfixed_boundaries = gather(nonfixed_boundaries, 0)
        nonfixed_boundaries = np.unique(np.array(nonfixed_boundaries))
        nonfixed_boundaries = broadcast(nonfixed_boundaries, 0)
        nonfixed_boundaries = nonfixed_boundaries.astype(np.int)
        assert len(nonfixed_boundaries) > 0

        nds = ds(nonfixed_boundaries[0])  # Is nds Sigma?
        for i in nonfixed_boundaries[1:]:
            nds += ds(i)
        if len(fixed_boundaries) > 0:
            fds = ds(fixed_boundaries[0])  # Is fds Gamma?
            for i in fixed_boundaries[1:]:
                fds += ds(i)

        def par(f, n):
            "Return parallel/tangential component of f"
            return f - dot(f, n) * n

        mu = Constant(problem.params.mu)  # Fluid viscosity
        rho_f = Constant(problem.params.rho)  # Fluid density
        rho_s = Constant(problem.params.rho_s)  # Structure density
        h_s = Constant(problem.params.h)  # Thickness

        if isinstance(problem.params.R, float):
            R = Constant(problem.params.R)
        else:
            R = problem.params.R

        beta = Constant(problem.params.E * float(h_s) /
                        (1 - problem.params.nu**2) * 1.0 / R**2)
        beta1 = Constant(0.5 * problem.params.E * float(h_s) /
                         (1 + problem.params.nu))
        alpha = Constant(1)
        alpha1 = Constant(1e-3)

        # Set up Field (see cbcpost documentation) to compute boundary traction
        T_bdry = BoundaryTraction()
        T_bdry.before_first_compute(lambda x: U)

        r = self.params.r
        s = self.params.s

        I = SpatialCoordinate(mesh)

        A = I + DF  # ALE map
        F = grad(A)
        J = det(F)

        # Tentative velocity, Eq. 30, mapped to reference mesh
        # Eq. 30.1
        a1 = inner(rho_f *
                   (u - U1) / dt, v) * J * dx()  # Is this mapping correct?
        #a1 = inner(rho_f*(u-U1)/dt, v)*dx() # Is this mapping correct?

        a1 += rho_f * inner((grad(u) * inv(F)) * (U1 - w), v) * J * dx()
        #a1 += rho_f*inner(grad(u)*U1, v)*dx()

        a1 += inner(J * Sigma(mu, u, Pext, F) * inv(F).T, grad(v)) * dx()
        #a1 += inner(sigma(mu, u, Pext), grad(v))*dx()
        a1 -= inner(J * Sigma(mu, u, Pext, F) * inv(F).T * n, v) * ds()
        #a1 -= inner(sigma(mu, u, Pext)*n, v)*ds()

        a1 += rho_f * inner(
            (grad(u) * inv(F)) * (U1 - w), v) * J * dx()  # dot or *

        a1 += inner(J * Sigma(mu, u, Pext, F) * inv(F).T, grad(v)) * dx()

        # Eq. 30.2
        #a1 += inner(sigma(mu, u, Pext)*n, v)*fds # Inflow/outflow. Should be Sigma?
        a1 += inner(Sigma(mu, u, Pext, F) * n,
                    v) * fds  # Matters only if Gamma is non-fixed?
        #a1 += inner(sigma(mu, u, Pext)*n, v)*fds # Matters only if Gamma is non-fixed?

        # Eq. 30.3
        #a1 += inner(J*sigma(mu, u, Pext)*inv(F).T*n, v)*nds # Should be Sigma?
        a1 += inner(J * Sigma(mu, u, Pext, F) * inv(F).T * n,
                    v) * nds  # Sigma because boundary moves?
        a1 += inner(sigma(mu, u, Pext) * n,
                    v) * nds  # Sigma because boundary moves?
        a1 += rho_s * h_s / dt * inner(u, v) * nds  # Should contain J?
        a1 -= rho_s * h_s / dt * inner(
            (DF1 - DF2) / dt +
            par(dt * (DFext - 2 * DFext1 + DFext2) / dt**2, n), v) * nds

        # Extrapolation cases of RHS of Eq. 30.3
        if r == 1:
            _F = grad(I + DF1)
            _J = det(_F)
            #a1 -= 2*mu*inner(par(_J*Epsilon(U1, _F)*inv(_F).T*n, n), v)*nds
            a1 -= 2 * mu * inner(par(epsilon(U1) * n, n), v) * nds
        elif r == 2:
            _F = grad(I + DF1)
            _J = det(_F)
            a1 -= 2 * 2 * mu * inner(
                par(_J * Epsilon(U1, _F) * inv(_F).T * n, n), v) * nds

            _F = grad(I + DF2)
            _J = det(_F)
            a1 += 2 * mu * inner(par(_J * Epsilon(U2, _F) * inv(_F).T * n, n),
                                 v) * nds

        L1 = rhs(a1)
        a1 = lhs(a1)

        A1 = assemble(a1)
        b1 = assemble(L1)

        solver_u_tent = create_solver("gmres", "additive_schwarz")

        # Pressure, Eq 31, mapped to reference mesh (note phi=p - Pext)
        # Eq. 31.1

        #a2 = inner(J*inv(F)*inv(F).T*grad(phi), grad(q))*dx()
        a2 = inner(dt / rho_f * J * inv(F) * inv(F).T * grad(phi),
                   grad(q)) * dx()
        #a2 = inner(dt/rho_f*grad(phi), grad(q))*dx()
        #a2 -= inner(J*inv(F)*inv(F).T*grad(phi), q*n)*ds()
        a2 -= inner(dt / rho_f * J * inv(F) * inv(F).T * grad(phi),
                    q * n) * ds()
        #a2 -= inner(dt/rho_f*grad(phi), q*n)*ds()
        a2 += div(J * inv(F) * U) * dx()
        #a2 += div(U)*dx()

        # Eq. 31.2
        a2 += phi * q * fds
        a2 -= (P - Pext) * q * fds

        # Eq. 31.3
        # Why no J?
        #a2 += dt/rho_f*dot(dot(grad(phi), n), q)*nds
        #a2 += dt/(rho_s*h_s)*phi*q*nds
        #a2 -= dt/(rho_s*h_s)*phiext*q*nds
        #a2 -= inner(Uext - (DFext - DFext1)/dt, n)*q*nds

        a2 += dt / rho_f * J * dot(dot(inv(F).T * grad(phi),
                                       inv(F).T * n), q) * nds
        a2 += dt / (rho_s * h_s) * J * phi * q * nds
        a2 -= dt / (rho_s * h_s) * J * phiext * q * nds
        a2 -= J * inner(Uext - (DFext - DFext1) / dt, inv(F).T * n) * q * nds

        # J*grad(phi)*inf(F), grad(q)*inf(F)
        a2 = inner(J * inv(F) * inv(F).T * grad(phi),
                   grad(q)) * dx()  # symmetry and *
        a2 -= inner(J * inv(F) * inv(F).T * grad(phi), q * n) * ds()  # remove?
        a2 += div(J * inv(F) * U) * dx()
        #a2 += div(J*U*inv(F).T)*dx()

        # Eq. 31.2
        a2 += phi * q * fds  # jacobian missing?
        a2 -= (P - Pext) * q * fds  # p_{gamma}(t_n) - Pext

        # Eq. 31.3
        a2 += dt / rho_f * dot(dot(grad(phi), n),
                               q) * nds  # Are Fs and stuff missing?
        a2 += dt / (rho_s * h_s) * phi * q * nds
        a2 -= dt / (rho_s * h_s) * phiext * q * nds
        a2 -= inner(Uext - (DFext - DFext1) / dt, n) * q * nds

        L2 = rhs(a2)
        a2 = lhs(a2)

        A2 = assemble(a2, keep_diagonal=True)
        b2 = assemble(L2)

        solver_p_corr = create_solver("bicgstab", "amg")
        #solver_p_corr = LinearSolver()

        # Velocity correction (u^n = tilde(u)^n+tau/rho*grad phi^n)
        a3 = inner(v, u) * dx()
        a3 -= inner(v, U) * dx()

        a3 += dt / rho_f * inner(v, grad(P - Pext)) * dx()

        a3 += dt / rho_f * inner(v, grad(P - Pext)) * dx()  # missing F?

        L3 = rhs(a3)
        a3 = lhs(a3)

        A3 = assemble(a3)
        b3 = assemble(L3)

        solver_u_corr = create_solver("gmres", "additive_schwarz")

        # Solid on boundary mesh (currently very simple model)
        # Is this solid sub-step eq. 1 p. 18?
        _dx = Measure("dx")

        a4 = rho_s * h_s / dt**2 * inner(
            eta - 2 * dgb1 + dgb2,
            x) * _dx  # Second time-derivative of boundary displacement

        # Elastic operator
        a4 += inner(beta * eta, x) * _dx
        a4 += inner(beta1 * grad(eta), grad(x)) * _dx  # -lambda1*dxx(eta)

        # Viscous operator
        a4 += inner(alpha * rho_s * h_s * (eta - ETA1) / dt, x) * _dx
        a4 += inner(alpha1 * beta1 * grad((eta - ETA1) / dt), grad(x)) * _dx

        a4 = rho_s * h_s / dt**2 * inner(
            eta - 2 * dgb1 + dgb2,
            x) * _dx  # Second time-derivative of boundary displacement
        a4 += inner(beta * eta, x) * _dx
        #a4 += inner(PI(eta),x)*_dx
        a4 += inner(traction, x) * _dx  # Force term

        L4 = rhs(a4)
        a4 = lhs(a4)

        A4 = assemble(a4)
        b4 = assemble(L4)
        solver_solid = create_solver("gmres", "hypre_euclid")

        # Mesh displacement (solve poisson equation with boundary displacement as bcs)
        a5 = inner(grad(d), grad(e)) * dx()
        L5 = inner(Constant((0, ) * dim), e) * dx()

        A5 = assemble(a5)
        b5 = assemble(L5)

        solver_displacement = create_solver(
            "gmres", "hypre_euclid")  # same as solid solver. Seems to work
        #solver_displacement = create_solver("cg", "ml_amg")        # fails to return a valid solver.

        # Helper functionality for getting boundary displacement as boundary condition
        local_dofmapping = boundarymesh_to_mesh_dofmap(bmesh, Db, D)
        _keys, _values = zip(*local_dofmapping.iteritems())
        _keys = np.array(_keys, dtype=np.intc)
        _values = np.array(_values, dtype=np.intc)

        ofile = open("jconst.txt", "w")
        for timestep in xrange(start_timestep + 1, len(timesteps)):
            t.assign(timesteps[timestep])

            # Update various functions
            problem.update(spaces, U, P, t, timestep, bcs, None, None)
            timer.completed("problem update")

            # Solve tentative velocity
            assemble(a1, tensor=A1)
            assemble(L1, tensor=b1)

            for bc in bcu:
                bc.apply(A1, b1)

            #solve(A1, U.vector(), b1)
            solver_u_tent.solve(A1, U.vector(), b1)

            # Solve pressure correction
            #assemble(a2, tensor=A2, keep_diagonal=True)
            b2.apply('insert')
            assemble(a2, tensor=A2)
            assemble(L2, tensor=b2)

            for bc in bcp:
                bc.apply(A2, b2)

            #solve(A2, P.vector(), b2)
            b2.apply("insert")
            solver_p_corr.solve(A2, P.vector(), b2)

            #P-vector().zero()
            #P.vector().axpy(1.0, phi.vector())
            #P.vector().axpy(1.0, Pext.vector())

            # Solve updated velocity
            assemble(a3, tensor=A3)
            assemble(L3, tensor=b3)
            for bc in bcu:
                bc.apply(A3, b3)

            #solve(A3, U.vector(), b3)
            solver_u_corr.solve(A3, U.vector(), b3)

            # Solve solid
            traction.assign(
                T_bdry.compute(
                    lambda x: {
                        "Velocity": U,
                        "Pressure": P,
                        "DynamicViscosity": mu,
                        "Displacement": DF
                    }[x]))

            assemble(a4, tensor=A4)
            assemble(L4, tensor=b4)

            # missing BC for eta?, i.e. a4 or is it don ethrough b4?
            #for bc in bcs_shell:
            #    bc.apply(A4, b4)
            #embed()
            #sys.exit()
            #b4.array()[np.array([0, -1])] = 0

            #solve(A4, dgb.vector(), b4)
            solver_solid.solve(A4, dgb.vector(), b4)

            # Solve mesh displacement
            db.interpolate(dgb)  # Interpolate to vertices on boundary
            get_set_vector(DF.vector(), _keys, db.vector(),
                           _values)  # Set boundary values to function

            for bc in bcs_eta:
                bc.apply(A5, b5)

            solver_displacement.solve(A5, DF.vector(), b5)

            # Rotate functions
            U1.assign(U)
            DF2.assign(DF1)
            DF1.assign(DF)
            dgb2.assign(dgb1)
            dgb1.assign(dgb)
            w.assign(DF - DF1)
            w.vector()[:] *= 1. / float(dt)  # Mesh velocity
            ETA1.assign(dgb)  # FIXME: Not sure about this

            # Update extrapolations
            Uext.update(U)
            phiext.update(P - Pext)
            Pext.update(P)
            DFext2.assign(DFext1)
            DFext1.assign(DFext)
            DFext.update(DF)

            ofile.write("%s\n" % assemble(J * dx))

            yield ParamDict(spaces=spaces,
                            observations=None,
                            controls=None,
                            t=float(t),
                            timestep=timestep,
                            u=U,
                            p=P,
                            d=DF,
                            state=(U, P, DF))