def testmissingrequiredattributes(self): """Is an error raised when required attributes are missing?""" for missing_attribute in DDEC6.required_attrs: self.parse() delattr(self.data, missing_attribute) with self.assertRaises(MissingAttributeError): trialBader = DDEC6(self.data, self.volume)
def testmissingrequiredattributes(self): """Is an error raised when required attributes are missing?""" for missing_attribute in DDEC6.required_attrs: self.parse() vol = volume.Volume((-4, -4, -4), (4, 4, 4), (0.2, 0.2, 0.2)) delattr(self.data, missing_attribute) with self.assertRaises(MissingAttributeError): trial = DDEC6(self.data, vol, os.path.dirname(os.path.realpath(__file__)))
def test_chgsum_h2(self): """ Are DDEC6 charges for hydrogen atoms in nonpolar H2 small as expected? Using much denser grid (spacing of 0.1 rather than 0.2 which is the cube file included in the test) gives [0.00046066, 0.00046066]. """ self.parse("h2") vol = volume.Volume((-2, -2, -2), (2, 2, 2), (0.2, 0.2, 0.2)) analysis = DDEC6(self.data, vol, os.path.dirname(os.path.realpath(__file__))) analysis.calculate() self.assertAlmostEqual(analysis.fragcharges[0], analysis.fragcharges[1], delta=1e-12)
def test_proatom_read(self): """Are proatom densities imported correctly?""" self.parse() vol = volume.Volume((-4, -4, -4), (4, 4, 4), (0.2, 0.2, 0.2)) self.analysis = DDEC6(self.data, vol, os.path.dirname(os.path.realpath(__file__))) refH_den = [ 2.66407645e-01, 2.66407645e-01, 2.66407643e-01, 2.66407612e-01, 2.66407322e-01, ] # Hydrogen first five densities refH_r = [ 1.17745807e-07, 4.05209491e-06, 3.21078677e-05, 1.39448474e-04, 4.35643929e-04, ] # Hydrogen first five radii refO_den = [ 2.98258510e02, 2.98258510e02, 2.98258509e02, 2.98258487e02, 2.98258290e02, ] # Oxygen first five densities refO_r = [ 5.70916728e-09, 1.97130512e-07, 1.56506399e-06, 6.80667366e-06, 2.12872046e-05, ] # Oxygen first five radii assert_allclose(self.analysis.proatom_density[0][0:5], refO_den, rtol=1e-3) assert_allclose(self.analysis.proatom_density[1][0:5], refH_den, rtol=1e-3) assert_allclose(self.analysis.proatom_density[2][0:5], refH_den, rtol=1e-3)
def test_chg_nh3(self): """ Are DDEC6 charges for ammonia reported as expected? Deviation from a total of zero (0.026545) occurs because the integrated value of total density (9.973453129261163) is slightly smaller than number of electrons. Using a finer grid reduces this discrepancy. """ self.parse("nh3") imported_vol = volume.read_from_cube( os.path.join(os.path.dirname(os.path.realpath(__file__)), "nh3.cube")) analysis = DDEC6(self.data, imported_vol, os.path.dirname(os.path.realpath(__file__))) analysis.calculate() assert_allclose(analysis.fragcharges, [-0.7824003, 0.26854388, 0.26959206, 0.27081123], atol=1e-3)
def test_chgsum_co(self): """ Are DDEC6 charges for carbon monoxide reported as expected? Deviation from a total of zero (-0.00682) occurs because the integrated value of total density (14.006876594937234) is slightly larger than # of electrons. Using a finer grid reduces this discrepancy. """ self.parse("co") imported_vol = volume.read_from_cube( os.path.join(os.path.dirname(os.path.realpath(__file__)), "co.cube")) analysis = DDEC6(self.data, imported_vol, os.path.dirname(os.path.realpath(__file__))) analysis.calculate() self.assertAlmostEqual(numpy.sum(analysis.fragcharges), 0, delta=1e-2) assert_allclose(analysis.fragcharges, [0.13221636, -0.13903595], atol=1e-3)
def test_water_charges(self): """Are charges and quantities in each step of DDEC6 algorithm calculated correctly for water? Here, values are compared against `chargemol` calculations. Due to the differences in basis set used for calculation and slightly different integration grid, some discrepancy is inevitable in the comparison. """ self.parse() # use precalculated fine cube file imported_vol = volume.read_from_cube( os.path.join(os.path.dirname(os.path.realpath(__file__)), "water_fine.cube")) analysis = DDEC6(self.data, imported_vol, os.path.dirname(os.path.realpath(__file__))) analysis.calculate() radial_indices = [] for atomi in range(len(self.data.atomnos)): lst = [] for radius in [0.05, 0.10, 0.15, 0.20, 0.25]: # find closest radius index lst.append( numpy.abs(analysis.radial_grid_r[atomi] - radius).argmin()) radial_indices.append(lst) # values from `chargemol` calculation # which is based on proatomic densities calculated with different basis set. # discrepancy comes from the fact that `chargemol` grid & `horton` grid don't exactly match # (rtol is adjusted to account for this inevitable discrepancy) # STEP 1 # Check assigned charges. assert_allclose(analysis.reference_charges[0], [-0.513006, 0.256231, 0.256775], rtol=0.10) # STEP 2 # Check assigned charges. assert_allclose(analysis.reference_charges[1], [-0.831591, 0.415430, 0.416161], rtol=0.20) # STEP 3 # Check integrated charge density (rho^cond(r)) on grid with integrated values (=nelec). self.assertAlmostEqual(analysis.charge_density.integrate(), analysis.rho_cond.integrate(), delta=1) for atomi in range(len(analysis.data.atomnos)): self.assertAlmostEqual( analysis._integrate_from_radial( [analysis._cond_density[atomi]], [atomi]) + analysis.reference_charges[-1][atomi], analysis.data.atomnos[atomi], delta=0.5, ) # Also compare with data from `chargemol` # discrepancy comes from the fact that `chargemol` grid and `horton` grid do not exactly match assert_allclose( analysis.tau[0][radial_indices[0]], [0.999846160, 0.999739647, 0.999114037, 0.997077942, 0.994510889], rtol=0.10, ) assert_allclose( analysis.tau[1][radial_indices[1]], [0.864765882, 0.848824620, 0.805562019, 0.760402501, 0.736949861], rtol=0.10, ) assert_allclose( analysis.tau[2][radial_indices[2]], [0.845934391, 0.839099407, 0.803699493, 0.778428137, 0.698628724], rtol=0.10, ) # STEP 4-7 # Check values assigned to u_A assert_allclose( analysis.u_A, [ [0.572349429, 0.296923935, 0.296520531], [0.563154399, 0.291919678, 0.291376710], [0.563475132, 0.292007655, 0.291508794], [0.565816045, 0.293131322, 0.292902112], ], atol=0.05, ) # Check assigned charges assert_allclose(analysis.fragcharges, [-0.757097, 0.378410, 0.378687], atol=0.2)