def test_kclique(self):
     g = get_string_graph()
     coms = algorithms.kclique(g, 3)
     self.assertEqual(type(coms.communities), list)
     if len(coms.communities) > 0:
         self.assertEqual(type(coms.communities[0]), list)
         self.assertEqual(type(coms.communities[0][0]), str)
    def test_ranking_comp(self):
        g = nx.karate_club_graph()
        coms = algorithms.louvain(g)
        coms2 = algorithms.kclique(g, 2)
        coms3 = algorithms.label_propagation(g)

        rk = evaluation.ComparisonRanking([coms, coms2, coms3])

        rk.rank(evaluation.overlapping_normalized_mutual_information_LFK)
        rk.rank(evaluation.overlapping_normalized_mutual_information_MGH)
        rk.rank(evaluation.omega)

        rnk, _ = rk.topsis()
        self.assertEqual(len(rnk), 3)

        pc = rk.bonferroni_post_hoc()
        self.assertLessEqual(len(pc), 4)
예제 #3
0
 def kclique(k) : return lambda G : algorithms.kclique(G, k)
 algos['kclique'] = kclique(20)