예제 #1
0
def evalInd(individual, buildList, locator, extraCosts, extraCO2, extraPrim,
            solarFeat, ntwFeat, gv):
    """
    Evaluates an individual
    
    Parameters
    ----------
    individual : list
    buildList : list of buildings in the district
    pahthX : string
    extraX : float
        parameters previously computed
    solarFeat / ntwFeat : class solarFeatures / ntwFeatures
    
    Returns
    -------
    (costs, CO2, Prim) : tuple of floats
    
    """
    print "Evaluate an individual"
    print individual, "\n"

    print "Check the individual"
    nBuildings = len(buildList)
    cCheck.controlCheck(individual, nBuildings, gv)

    indCombi = sFn.readCombi(individual, gv)
    costs = extraCosts
    CO2 = extraCO2
    prim = extraPrim
    QUncoveredDesign = 0
    QUncoveredAnnual = 0

    print indCombi.count("0")
    print indCombi.count("1")

    if indCombi.count("0") == 0:
        fNameNtw = "Network_summary_result_all.csv"
    else:
        fNameNtw = "Network_summary_result_" + indCombi + ".csv"

    if indCombi.count("1") > 0:
        Qheatmax = sFn.calcQmax(fNameNtw, locator.pathNtwRes, gv)
    else:
        Qheatmax = 0

    print Qheatmax, "Qheatmax in network"
    Qnom = Qheatmax * (1 + gv.Qmargin_ntw)

    # Modify the individual with the extra GHP constraint
    try:
        cCheck.GHPCheck(individual, locator.pathRaw, Qnom, gv)
        print "GHP constraint checked \n"
    except:
        print "No GHP constraint check possible \n"

    # Export to context
    dicoSupply = readInd(individual, Qheatmax, locator, gv)
    dicoSupply.NETWORK_DATA_FILE = fNameNtw

    if dicoSupply.nBuildingsConnected > 1:
        if indCombi.count("0") == 0:
            dicoSupply.fNameTotalCSV = locator.pathRaw + "/Total.csv"
        else:
            dicoSupply.fNameTotalCSV = locator.pathTotalNtw + "/Total_" + indCombi + ".csv"
    else:
        dicoSupply.fNameTotalCSV = locator.pathSubsRes + "/Total_" + indCombi + ".csv"

    if indCombi.count("1") > 0:
        #print "Dummy evaluation of", dicoSupply.configKey
        #(slavePrim, slaveCO2, slaveCosts, QUncoveredDesign, QUncoveredAnnual) = sFn.dummyevaluate(individual)

        print "Slave routine on", dicoSupply.configKey
        (slavePrim, slaveCO2, slaveCosts, QUncoveredDesign,
         QUncoveredAnnual) = sM.slaveMain(locator, fNameNtw, dicoSupply,
                                          solarFeat, gv)
        print slaveCosts, slaveCO2, slavePrim, "slaveCosts, slaveCO2, slavePrim \n"

        costs += slaveCosts
        CO2 += slaveCO2
        prim += slavePrim

    else:
        print "No buildings connected to network \n"

    print "Add extra costs"
    (addCosts, addCO2, addPrim) = eM.addCosts(indCombi, buildList, locator,
                                              dicoSupply, QUncoveredDesign,
                                              QUncoveredAnnual, solarFeat,
                                              ntwFeat, gv)
    print addCosts, addCO2, addPrim, "addCosts, addCO2, addPrim \n"

    if gv.ZernezFlag == 1:
        coolCosts, coolCO2, coolPrim = 0, 0, 0
    else:
        (coolCosts, coolCO2, coolPrim) = coolMain.coolingMain(
            locator, dicoSupply.configKey, ntwFeat,
            dicoSupply.WasteServersHeatRecovery, gv)

    print coolCosts, coolCO2, coolPrim, "coolCosts, coolCO2, coolPrim \n"

    costs += addCosts + coolCosts
    CO2 += addCO2 + coolCO2
    prim += addPrim + coolPrim

    print "Evaluation of", dicoSupply.configKey, "done"
    print costs, CO2, prim, " = costs, CO2, prim \n"
    return (costs, CO2, prim)
예제 #2
0
def evaluation_main(individual, building_names, locator, solar_features,
                    network_features, gv, config, prices, lca, ind_num, gen):
    """
    This function evaluates an individual

    :param individual: list with values of the individual
    :param building_names: list with names of buildings
    :param locator: locator class
    :param solar_features: solar features call to class
    :param network_features: network features call to class
    :param gv: global variables class
    :param optimization_constants: class containing constants used in optimization
    :param config: configuration file
    :param prices: class of prices used in optimization
    :type individual: list
    :type building_names: list
    :type locator: string
    :type solar_features: class
    :type network_features: class
    :type gv: class
    :type optimization_constants: class
    :type config: class
    :type prices: class
    :return: Resulting values of the objective function. costs, CO2, prim
    :rtype: tuple

    """
    # Check the consistency of the individual or create a new one
    individual = check_invalid(individual, len(building_names), config)

    # Initialize objective functions costs, CO2 and primary energy
    costs_USD = 0
    GHG_tonCO2 = 0
    PEN_MJoil = 0
    Q_heating_uncovered_design_W = 0
    Q_heating_uncovered_annual_W = 0

    # Create the string representation of the individual
    DHN_barcode, DCN_barcode, DHN_configuration, DCN_configuration = supportFn.individual_to_barcode(
        individual, building_names)

    if DHN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_all_results_summary('all'),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()
    elif DHN_barcode.count("1") == 0:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_heating_max_W = 0
    else:
        network_file_name_heating = "Network_summary_result_" + hex(
            int(str(DHN_barcode), 2)) + ".csv"
        if not os.path.exists(
                locator.get_optimization_network_results_summary(DHN_barcode)):
            total_demand = supportFn.createTotalNtwCsv(DHN_barcode, locator)
            building_names = total_demand.Name.values
            # Run the substation and distribution routines
            substation.substation_main(locator,
                                       total_demand,
                                       building_names,
                                       DHN_configuration,
                                       DCN_configuration,
                                       Flag=True)
            summarize_network.network_main(locator, total_demand,
                                           building_names, config, gv,
                                           DHN_barcode)

        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_results_summary(DHN_barcode),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()

    if DCN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_cooling = "Network_summary_result_all.csv"
        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()
    elif DCN_barcode.count("1") == 0:
        network_file_name_cooling = "Network_summary_result_all.csv"
        Q_cooling_max_W = 0
    else:
        network_file_name_cooling = "Network_summary_result_" + hex(
            int(str(DCN_barcode), 2)) + ".csv"

        if not os.path.exists(
                locator.get_optimization_network_results_summary(DCN_barcode)):
            total_demand = supportFn.createTotalNtwCsv(DCN_barcode, locator)
            building_names = total_demand.Name.values

            # Run the substation and distribution routines
            substation.substation_main(locator,
                                       total_demand,
                                       building_names,
                                       DHN_configuration,
                                       DCN_configuration,
                                       Flag=True)
            summarize_network.network_main(locator, total_demand,
                                           building_names, config, gv,
                                           DCN_barcode)

        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()

    Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK)
    Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK)

    # Modify the individual with the extra GHP constraint
    try:
        check.GHPCheck(individual, locator, Q_heating_nom_W, gv)
    except:
        print "No GHP constraint check possible \n"

    # Export to context
    master_to_slave_vars = calc_master_to_slave_variables(
        individual, Q_heating_max_W, Q_cooling_max_W, building_names, ind_num,
        gen)
    master_to_slave_vars.network_data_file_heating = network_file_name_heating
    master_to_slave_vars.network_data_file_cooling = network_file_name_cooling
    master_to_slave_vars.total_buildings = len(building_names)
    master_to_slave_vars.DHN_barcode = DHN_barcode
    master_to_slave_vars.DCN_barcode = DCN_barcode

    if master_to_slave_vars.number_of_buildings_connected_heating > 1:
        if DHN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DHN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DHN_barcode)

    if master_to_slave_vars.number_of_buildings_connected_cooling > 1:
        if DCN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DCN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DCN_barcode)

    # Thermal Storage Calculations; Run storage optimization
    costs_storage_USD, GHG_storage_tonCO2, PEN_storage_MJoil = storage_main.storage_optimization(
        locator, master_to_slave_vars, lca, prices, config)

    costs_USD += costs_storage_USD
    GHG_tonCO2 += GHG_storage_tonCO2
    PEN_MJoil += PEN_storage_MJoil

    # District Heating Calculations
    if config.district_heating_network:

        if DHN_barcode.count("1") > 0:

            (PEN_heating_MJoil, GHG_heating_tonCO2, costs_heating_USD,
             Q_heating_uncovered_design_W, Q_heating_uncovered_annual_W
             ) = heating_main.heating_calculations_of_DH_buildings(
                 locator, master_to_slave_vars, gv, config, prices, lca)
        else:

            GHG_heating_tonCO2 = 0
            costs_heating_USD = 0
            PEN_heating_MJoil = 0
    else:
        GHG_heating_tonCO2 = 0
        costs_heating_USD = 0
        PEN_heating_MJoil = 0

    costs_USD += costs_heating_USD
    GHG_tonCO2 += GHG_heating_tonCO2
    PEN_MJoil += PEN_heating_MJoil

    # District Cooling Calculations
    if gv.ZernezFlag == 1:
        costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil = 0, 0, 0
    elif config.district_cooling_network:
        reduced_timesteps_flag = False
        (costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil
         ) = cooling_main.cooling_calculations_of_DC_buildings(
             locator, master_to_slave_vars, network_features, gv, prices, lca,
             config, reduced_timesteps_flag)
    else:
        costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil = 0, 0, 0

    costs_USD += costs_cooling_USD
    GHG_tonCO2 += GHG_cooling_tonCO2
    PEN_MJoil += PEN_cooling_MJoil

    # District Electricity Calculations
    (costs_electricity_USD, GHG_electricity_tonCO2, PEN_electricity_MJoil
     ) = electricity_main.electricity_calculations_of_all_buildings(
         DHN_barcode, DCN_barcode, locator, master_to_slave_vars,
         network_features, gv, prices, lca, config)

    costs_USD += costs_electricity_USD
    GHG_tonCO2 += GHG_electricity_tonCO2
    PEN_MJoil += PEN_electricity_MJoil

    # Natural Gas Import Calculations. Prices, GHG and PEN are already included in the various sections.
    # This is to save the files for further processing and plots
    natural_gas_main.natural_gas_imports(master_to_slave_vars, locator, config)

    # Capex Calculations
    print "Add extra costs"
    (costs_additional_USD,
     GHG_additional_tonCO2, PEN_additional_MJoil) = cost_model.addCosts(
         building_names, locator, master_to_slave_vars,
         Q_heating_uncovered_design_W, Q_heating_uncovered_annual_W,
         solar_features, network_features, gv, config, prices, lca)

    costs_USD += costs_additional_USD
    GHG_tonCO2 += GHG_additional_tonCO2
    PEN_MJoil += PEN_additional_MJoil

    summarize_individual.summarize_individual_main(master_to_slave_vars,
                                                   building_names, individual,
                                                   solar_features, locator,
                                                   config)

    # Converting costs into float64 to avoid longer values
    costs_USD = np.float64(costs_USD)
    GHG_tonCO2 = np.float64(GHG_tonCO2)
    PEN_MJoil = np.float64(PEN_MJoil)

    print('Total costs = ' + str(costs_USD))
    print('Total CO2 = ' + str(GHG_tonCO2))
    print('Total prim = ' + str(PEN_MJoil))

    # Saving capacity details of the individual

    return costs_USD, GHG_tonCO2, PEN_MJoil, master_to_slave_vars, individual
예제 #3
0
def supply_calculation(individual, building_names, total_demand, locator,
                       extra_costs, extra_CO2, extra_primary_energy,
                       solar_features, network_features, gv, config, prices,
                       lca):
    """
    This function evaluates one supply system configuration of the case study.
    :param individual: a list that indicates the supply system configuration
    :type individual: list
    :param building_names: names of all building in the district
    :type building_names: ndarray
    :param locator:
    :param extra_costs: cost of decentralized supply systems
    :param extra_CO2: CO2 emission of decentralized supply systems
    :param extra_primary_energy: Primary energy of decentralized supply systems
    :param solar_features: Energy production potentials of solar technologies, including area of installed panels and annual production
    :type solar_features: dict
    :param network_features: hourly network operating conditions (thermal/pressure losses) and capital costs
    :type network_features: dict
    :param gv:
    :param config:
    :param prices:
    :return:
    """
    individual = evaluation.check_invalid(individual, len(building_names),
                                          config)

    # Initialize objective functions costs, CO2 and primary energy
    costs_USD = 0.0
    GHG_tonCO2 = extra_CO2
    PEN_MJoil = extra_primary_energy
    Q_uncovered_design_W = 0.0
    Q_uncovered_annual_W = 0.0

    # Create the string representation of the individual
    DHN_barcode, DCN_barcode, DHN_configuration, DCN_configuration = supportFn.individual_to_barcode(
        individual, building_names)

    # read the total loads from buildings connected to thermal networks
    if DHN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_all_results_summary('all'),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()
    elif DHN_barcode.count("1") == 0:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_heating_max_W = 0.0
    else:
        # Run the substation and distribution routines
        substation.substation_main(locator,
                                   total_demand,
                                   building_names,
                                   DHN_configuration,
                                   DCN_configuration,
                                   Flag=True)

        summarize_network.network_main(locator, total_demand, building_names,
                                       config, gv, DHN_barcode)

        network_file_name_heating = "Network_summary_result_" + hex(
            int(str(DHN_barcode), 2)) + ".csv"
        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_results_summary(DHN_barcode),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()

    if DCN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_cooling = "Network_summary_result_all.csv"
        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()
    elif DCN_barcode.count("1") == 0:
        network_file_name_cooling = "Network_summary_result_none.csv"
        Q_cooling_max_W = 0
    else:
        # Run the substation and distribution routines
        substation.substation_main(locator,
                                   total_demand,
                                   building_names,
                                   DHN_configuration,
                                   DCN_configuration,
                                   Flag=True)

        summarize_network.network_main(locator, total_demand, building_names,
                                       config, gv, DCN_barcode)

        network_file_name_cooling = "Network_summary_result_" + hex(
            int(str(DCN_barcode), 2)) + ".csv"

        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()

    Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK)
    Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK)

    # Modify the individual with the extra GHP constraint
    try:
        check.GHPCheck(individual, locator, Q_heating_nom_W, gv)
    except:
        print "No GHP constraint check possible \n"

    # Export to context
    individual_number = calc_individual_number(locator)
    master_to_slave_vars = evaluation.calc_master_to_slave_variables(
        individual, Q_heating_max_W, Q_cooling_max_W, building_names,
        individual_number, GENERATION_NUMBER)
    master_to_slave_vars.network_data_file_heating = network_file_name_heating
    master_to_slave_vars.network_data_file_cooling = network_file_name_cooling
    master_to_slave_vars.total_buildings = len(building_names)

    if master_to_slave_vars.number_of_buildings_connected_heating > 1:
        if DHN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DHN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DHN_barcode)

    if master_to_slave_vars.number_of_buildings_connected_cooling > 1:
        if DCN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DCN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DCN_barcode)

    costs_storage_USD, GHG_storage_tonCO2, PEN_storage_MJoil = storage_main.storage_optimization(
        locator, master_to_slave_vars, lca, prices, config)

    costs_USD += costs_storage_USD
    GHG_tonCO2 += GHG_storage_tonCO2
    PEN_MJoil += PEN_storage_MJoil

    # slave optimization of heating networks
    if config.district_heating_network:
        if DHN_barcode.count("1") > 0:
            (PEN_heating_MJoil, GHG_heating_tonCO2, costs_heating_USD,
             Q_uncovered_design_W, Q_uncovered_annual_W
             ) = heating_main.heating_calculations_of_DH_buildings(
                 locator, master_to_slave_vars, gv, config, prices, lca)
        else:
            GHG_heating_tonCO2 = 0.0
            costs_heating_USD = 0.0
            PEN_heating_MJoil = 0.0
    else:
        GHG_heating_tonCO2 = 0.0
        costs_heating_USD = 0.0
        PEN_heating_MJoil = 0.0

    costs_USD += costs_heating_USD
    GHG_tonCO2 += GHG_heating_tonCO2
    PEN_MJoil += PEN_heating_MJoil

    # slave optimization of cooling networks
    if gv.ZernezFlag == 1:
        costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil = 0.0, 0.0, 0.0
    elif config.district_cooling_network and DCN_barcode.count("1") > 0:
        reduced_timesteps_flag = config.supply_system_simulation.reduced_timesteps
        (costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil
         ) = cooling_main.cooling_calculations_of_DC_buildings(
             locator, master_to_slave_vars, network_features, gv, prices, lca,
             config, reduced_timesteps_flag)
        # if reduced_timesteps_flag:
        #     # reduced timesteps simulation for a month (May)
        #     coolCosts = coolCosts * (8760/(3624/2880))
        #     coolCO2 = coolCO2 * (8760/(3624/2880))
        #     coolPrim = coolPrim * (8760/(3624/2880))
        #     # FIXME: check results
    else:
        costs_cooling_USD, GHG_cooling_tonCO2, PEN_cooling_MJoil = 0.0, 0.0, 0.0

    # District Electricity Calculations
    costs_electricity_USD, GHG_electricity_tonCO2, PEN_electricity_MJoil = electricity_main.electricity_calculations_of_all_buildings(
        DHN_barcode, DCN_barcode, locator, master_to_slave_vars,
        network_features, gv, prices, lca, config)

    costs_USD += costs_electricity_USD
    GHG_tonCO2 += GHG_electricity_tonCO2
    PEN_MJoil += PEN_electricity_MJoil

    natural_gas_main.natural_gas_imports(master_to_slave_vars, locator, config)

    # print "Add extra costs"
    # add costs of disconnected buildings (best configuration)
    (costs_additional_USD,
     GHG_additional_tonCO2, PEN_additional_MJoil) = cost_model.addCosts(
         building_names, locator, master_to_slave_vars, Q_uncovered_design_W,
         Q_uncovered_annual_W, solar_features, network_features, gv, config,
         prices, lca)

    costs_USD += costs_additional_USD
    GHG_tonCO2 += GHG_additional_tonCO2
    PEN_MJoil += PEN_additional_MJoil

    costs_USD = (np.float64(costs_USD) / 1e6).round(2)  # $ to Mio$
    GHG_tonCO2 = (np.float64(GHG_tonCO2) / 1e6).round(2)  # kg to kilo-ton
    PEN_MJoil = (np.float64(PEN_MJoil) / 1e6).round(2)  # MJ to TJ

    # add electricity costs corresponding to

    # print ('Additional costs = ' + str(addCosts))
    # print ('Additional CO2 = ' + str(addCO2))
    # print ('Additional prim = ' + str(addPrim))

    print('Total annualized costs [USD$(2015) Mio/yr] = ' + str(costs_USD))
    print('Green house gas emission [kton-CO2/yr] = ' + str(GHG_tonCO2))
    print('Primary energy [TJ-oil-eq/yr] = ' + str(PEN_MJoil))

    results = {
        'TAC_Mio_per_yr': [costs_USD.round(2)],
        'CO2_kton_per_yr': [GHG_tonCO2.round(2)],
        'Primary_Energy_TJ_per_yr': [PEN_MJoil.round(2)]
    }
    results_df = pd.DataFrame(results)
    results_path = os.path.join(
        locator.get_optimization_slave_results_folder(GENERATION_NUMBER),
        'ind_' + str(individual_number) + '_results.csv')
    results_df.to_csv(results_path)

    with open(locator.get_optimization_checkpoint_initial(), "wb") as fp:
        pop = []
        g = GENERATION_NUMBER
        epsInd = []
        invalid_ind = []
        fitnesses = []
        capacities = []
        disconnected_capacities = []
        halloffame = []
        halloffame_fitness = []
        euclidean_distance = []
        spread = []
        cp = dict(population=pop,
                  generation=g,
                  epsIndicator=epsInd,
                  testedPop=invalid_ind,
                  population_fitness=fitnesses,
                  capacities=capacities,
                  disconnected_capacities=disconnected_capacities,
                  halloffame=halloffame,
                  halloffame_fitness=halloffame_fitness,
                  euclidean_distance=euclidean_distance,
                  spread=spread)
        json.dump(cp, fp)

    return costs_USD, GHG_tonCO2, PEN_MJoil, master_to_slave_vars, individual
예제 #4
0
def supply_calculation(individual, building_names, total_demand, locator,
                       extra_costs, extra_CO2, extra_primary_energy,
                       solar_features, network_features, gv, config, prices,
                       lca):
    """
    This function evaluates one supply system configuration of the case study.
    :param individual: a list that indicates the supply system configuration
    :type individual: list
    :param building_names: names of all building in the district
    :type building_names: ndarray
    :param locator:
    :param extra_costs: cost of decentralized supply systems
    :param extra_CO2: CO2 emission of decentralized supply systems
    :param extra_primary_energy: Primary energy of decentralized supply systems
    :param solar_features: Energy production potentials of solar technologies, including area of installed panels and annual production
    :type solar_features: dict
    :param network_features: hourly network operating conditions (thermal/pressure losses) and capital costs
    :type network_features: dict
    :param gv:
    :param config:
    :param prices:
    :return:
    """
    individual = evaluation.check_invalid(individual, len(building_names),
                                          config)

    # Initialize objective functions costs, CO2 and primary energy
    costs = 0
    CO2 = extra_CO2
    prim = extra_primary_energy
    QUncoveredDesign = 0
    QUncoveredAnnual = 0

    # Create the string representation of the individual
    DHN_barcode, DCN_barcode, DHN_configuration, DCN_configuration = sFn.individual_to_barcode(
        individual, building_names)

    # read the total loads from buildings connected to thermal networks
    if DHN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_all_results_summary('all'),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()
    elif DHN_barcode.count("1") == 0:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_heating_max_W = 0
    else:
        # Run the substation and distribution routines
        sMain.substation_main(locator,
                              total_demand,
                              building_names,
                              DHN_configuration,
                              DCN_configuration,
                              Flag=True)

        nM.network_main(locator, total_demand, building_names, config, gv,
                        DHN_barcode)

        network_file_name_heating = "Network_summary_result_" + hex(
            int(str(DHN_barcode), 2)) + ".csv"
        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_results_summary(DHN_barcode),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()

    if DCN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_cooling = "Network_summary_result_all.csv"
        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()
    elif DCN_barcode.count("1") == 0:
        network_file_name_cooling = "Network_summary_result_none.csv"
        Q_cooling_max_W = 0
    else:
        # Run the substation and distribution routines
        sMain.substation_main(locator,
                              total_demand,
                              building_names,
                              DHN_configuration,
                              DCN_configuration,
                              Flag=True)

        nM.network_main(locator, total_demand, building_names, config, gv,
                        DCN_barcode)

        network_file_name_cooling = "Network_summary_result_" + hex(
            int(str(DCN_barcode), 2)) + ".csv"

        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()

    Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK)
    Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK)

    # Modify the individual with the extra GHP constraint
    try:
        cCheck.GHPCheck(individual, locator, Q_heating_nom_W, gv)
    except:
        print "No GHP constraint check possible \n"

    # Export to context
    individual_number = calc_individual_number(locator)
    master_to_slave_vars = evaluation.calc_master_to_slave_variables(
        individual, Q_heating_max_W, Q_cooling_max_W, building_names,
        individual_number, GENERATION_NUMBER)
    master_to_slave_vars.network_data_file_heating = network_file_name_heating
    master_to_slave_vars.network_data_file_cooling = network_file_name_cooling
    master_to_slave_vars.total_buildings = len(building_names)

    if master_to_slave_vars.number_of_buildings_connected_heating > 1:
        if DHN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DHN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DHN_barcode)

    if master_to_slave_vars.number_of_buildings_connected_cooling > 1:
        if DCN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DCN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DCN_barcode)

    # slave optimization of heating networks
    if config.optimization.isheating:
        if DHN_barcode.count("1") > 0:
            (slavePrim, slaveCO2, slaveCosts, QUncoveredDesign,
             QUncoveredAnnual) = sM.slave_main(locator, master_to_slave_vars,
                                               solar_features, gv, config,
                                               prices)
        else:
            slaveCO2 = 0
            slaveCosts = 0
            slavePrim = 0
    else:
        slaveCO2 = 0
        slaveCosts = 0
        slavePrim = 0

    costs += slaveCosts
    CO2 += slaveCO2
    prim += slavePrim

    # slave optimization of cooling networks
    if gv.ZernezFlag == 1:
        coolCosts, coolCO2, coolPrim = 0, 0, 0
    elif config.optimization.iscooling and DCN_barcode.count("1") > 0:
        reduced_timesteps_flag = config.supply_system_simulation.reduced_timesteps
        (coolCosts, coolCO2,
         coolPrim) = coolMain.coolingMain(locator, master_to_slave_vars,
                                          network_features, gv, prices, lca,
                                          config, reduced_timesteps_flag)
        # if reduced_timesteps_flag:
        #     # reduced timesteps simulation for a month (May)
        #     coolCosts = coolCosts * (8760/(3624/2880))
        #     coolCO2 = coolCO2 * (8760/(3624/2880))
        #     coolPrim = coolPrim * (8760/(3624/2880))
        #     # FIXME: check results
    else:
        coolCosts, coolCO2, coolPrim = 0, 0, 0

    # print "Add extra costs"
    # add costs of disconnected buildings (best configuration)
    (addCosts, addCO2,
     addPrim) = eM.addCosts(DHN_barcode, DCN_barcode, building_names, locator,
                            master_to_slave_vars, QUncoveredDesign,
                            QUncoveredAnnual, solar_features, network_features,
                            gv, config, prices, lca)

    # recalculate the addCosts by substracting the decentralized costs and add back to corresponding supply system
    Cost_diff, CO2_diff, Prim_diff = calc_decentralized_building_costs(
        config, locator, master_to_slave_vars, DHN_barcode, DCN_barcode,
        building_names)
    addCosts = addCosts + Cost_diff
    addCO2 = addCO2 + CO2_diff
    addPrim = addPrim + Prim_diff

    # add Capex and Opex of PV
    data_electricity = pd.read_csv(
        os.path.join(
            locator.
            get_optimization_slave_electricity_activation_pattern_cooling(
                individual_number, GENERATION_NUMBER)))

    total_area_for_pv = data_electricity['Area_PV_m2'].max()
    # remove the area installed with solar collectors
    sc_installed_area = 0
    if config.supply_system_simulation.decentralized_systems == 'Single-effect Absorption Chiller':
        for (index, building_name) in zip(DCN_barcode, building_names):
            if index == "0":
                sc_installed_area = sc_installed_area + pd.read_csv(
                    locator.PV_results(building_name))['Area_PV_m2'].max()
    pv_installed_area = total_area_for_pv - sc_installed_area
    Capex_a_PV, Opex_fixed_PV = calc_Cinv_pv(pv_installed_area, locator,
                                             config)
    pv_annual_production_kWh = (data_electricity['E_PV_W'].sum()) / 1000

    # electricity calculations
    data_network_electricity = pd.read_csv(
        os.path.join(
            locator.
            get_optimization_slave_electricity_activation_pattern_cooling(
                individual_number, GENERATION_NUMBER)))

    data_cooling = pd.read_csv(
        os.path.join(
            locator.get_optimization_slave_cooling_activation_pattern(
                individual_number, GENERATION_NUMBER)))

    total_demand = pd.read_csv(locator.get_total_demand())
    building_names = total_demand.Name.values
    total_electricity_demand_W = data_network_electricity['E_total_req_W']
    E_decentralized_appliances_W = np.zeros(8760)

    for i, name in zip(
            DCN_barcode, building_names
    ):  # adding the electricity demand from the decentralized buildings
        if i is '0':
            building_demand = pd.read_csv(locator.get_demand_results_folder() +
                                          '//' + name + ".csv",
                                          usecols=['E_sys_kWh'])
            E_decentralized_appliances_W += building_demand['E_sys_kWh'] * 1000

    total_electricity_demand_W = total_electricity_demand_W.add(
        E_decentralized_appliances_W)
    E_for_hot_water_demand_W = np.zeros(8760)

    for i, name in zip(
            DCN_barcode, building_names
    ):  # adding the electricity demand for hot water from all buildings
        building_demand = pd.read_csv(locator.get_demand_results_folder() +
                                      '//' + name + ".csv",
                                      usecols=['E_ww_kWh'])
        E_for_hot_water_demand_W += building_demand['E_ww_kWh'] * 1000

    total_electricity_demand_W = total_electricity_demand_W.add(
        E_for_hot_water_demand_W)
    # Electricity of Energy Systems
    lca = lca_calculations(locator, config)
    E_VCC_W = data_cooling['Opex_var_VCC'] / lca.ELEC_PRICE
    E_VCC_backup_W = data_cooling['Opex_var_VCC_backup'] / lca.ELEC_PRICE
    E_ACH_W = data_cooling['Opex_var_ACH'] / lca.ELEC_PRICE
    E_CT_W = abs(data_cooling['Opex_var_CT']) / lca.ELEC_PRICE
    total_electricity_demand_W = total_electricity_demand_W.add(E_VCC_W)
    total_electricity_demand_W = total_electricity_demand_W.add(E_VCC_backup_W)
    total_electricity_demand_W = total_electricity_demand_W.add(E_ACH_W)
    total_electricity_demand_W = total_electricity_demand_W.add(E_CT_W)
    E_from_CHP_W = data_network_electricity[
        'E_CHP_to_directload_W'] + data_network_electricity['E_CHP_to_grid_W']
    E_from_PV_W = data_network_electricity[
        'E_PV_to_directload_W'] + data_network_electricity['E_PV_to_grid_W']

    E_CHP_to_directload_W = np.zeros(8760)
    E_CHP_to_grid_W = np.zeros(8760)
    E_PV_to_directload_W = np.zeros(8760)
    E_PV_to_grid_W = np.zeros(8760)
    E_from_grid_W = np.zeros(8760)

    # modify simulation timesteps
    if reduced_timesteps_flag == False:
        start_t = 0
        stop_t = 8760
    else:
        # timesteps in May
        start_t = 2880
        stop_t = 3624
    timesteps = range(start_t, stop_t)

    for hour in timesteps:
        E_hour_W = total_electricity_demand_W[hour]
        if E_hour_W > 0:
            if E_from_PV_W[hour] > E_hour_W:
                E_PV_to_directload_W[hour] = E_hour_W
                E_PV_to_grid_W[hour] = E_from_PV_W[
                    hour] - total_electricity_demand_W[hour]
                E_hour_W = 0
            else:
                E_hour_W = E_hour_W - E_from_PV_W[hour]
                E_PV_to_directload_W[hour] = E_from_PV_W[hour]

            if E_from_CHP_W[hour] > E_hour_W:
                E_CHP_to_directload_W[hour] = E_hour_W
                E_CHP_to_grid_W[hour] = E_from_CHP_W[hour] - E_hour_W
                E_hour_W = 0
            else:
                E_hour_W = E_hour_W - E_from_CHP_W[hour]
                E_CHP_to_directload_W[hour] = E_from_CHP_W[hour]

            E_from_grid_W[hour] = E_hour_W

    date = data_network_electricity.DATE.values

    results = pd.DataFrame(
        {
            "DATE": date,
            "E_total_req_W": total_electricity_demand_W,
            "E_from_grid_W": E_from_grid_W,
            "E_VCC_W": E_VCC_W,
            "E_VCC_backup_W": E_VCC_backup_W,
            "E_ACH_W": E_ACH_W,
            "E_CT_W": E_CT_W,
            "E_PV_to_directload_W": E_PV_to_directload_W,
            "E_CHP_to_directload_W": E_CHP_to_directload_W,
            "E_CHP_to_grid_W": E_CHP_to_grid_W,
            "E_PV_to_grid_W": E_PV_to_grid_W,
            "E_for_hot_water_demand_W": E_for_hot_water_demand_W,
            "E_decentralized_appliances_W": E_decentralized_appliances_W,
            "E_total_to_grid_W_negative": -E_PV_to_grid_W - E_CHP_to_grid_W
        }
    )  # let's keep this negative so it is something exported, we can use it in the graphs of likelihood

    if reduced_timesteps_flag:
        reduced_el_costs = ((results['E_from_grid_W'].sum() +
                             results['E_total_to_grid_W_negative'].sum()) *
                            lca.ELEC_PRICE)
        electricity_costs = reduced_el_costs * (8760 / (stop_t - start_t))
    else:
        electricity_costs = ((results['E_from_grid_W'].sum() +
                              results['E_total_to_grid_W_negative'].sum()) *
                             lca.ELEC_PRICE)

    # emission from data
    data_emissions = pd.read_csv(
        os.path.join(
            locator.get_optimization_slave_investment_cost_detailed(
                individual_number, GENERATION_NUMBER)))
    update_PV_emission = abs(
        2 * data_emissions['CO2_PV_disconnected']).values[0]  # kg-CO2
    update_PV_primary = abs(
        2 * data_emissions['Eprim_PV_disconnected']).values[0]  # MJ oil-eq

    costs += addCosts + coolCosts + electricity_costs + Capex_a_PV + Opex_fixed_PV
    CO2 = CO2 + addCO2 + coolCO2 - update_PV_emission
    prim = prim + addPrim + coolPrim - update_PV_primary
    # Converting costs into float64 to avoid longer values
    costs = (np.float64(costs) / 1e6).round(2)  # $ to Mio$
    CO2 = (np.float64(CO2) / 1e6).round(2)  # kg to kilo-ton
    prim = (np.float64(prim) / 1e6).round(2)  # MJ to TJ

    # add electricity costs corresponding to

    # print ('Additional costs = ' + str(addCosts))
    # print ('Additional CO2 = ' + str(addCO2))
    # print ('Additional prim = ' + str(addPrim))

    print('Total annualized costs [USD$(2015) Mio/yr] = ' + str(costs))
    print('Green house gas emission [kton-CO2/yr] = ' + str(CO2))
    print('Primary energy [TJ-oil-eq/yr] = ' + str(prim))

    results = {
        'TAC_Mio_per_yr': [costs.round(2)],
        'CO2_kton_per_yr': [CO2.round(2)],
        'Primary_Energy_TJ_per_yr': [prim.round(2)]
    }
    results_df = pd.DataFrame(results)
    results_path = os.path.join(
        locator.get_optimization_slave_results_folder(GENERATION_NUMBER),
        'ind_' + str(individual_number) + '_results.csv')
    results_df.to_csv(results_path)

    with open(locator.get_optimization_checkpoint_initial(), "wb") as fp:
        pop = []
        g = GENERATION_NUMBER
        epsInd = []
        invalid_ind = []
        fitnesses = []
        capacities = []
        disconnected_capacities = []
        halloffame = []
        halloffame_fitness = []
        euclidean_distance = []
        spread = []
        cp = dict(population=pop,
                  generation=g,
                  epsIndicator=epsInd,
                  testedPop=invalid_ind,
                  population_fitness=fitnesses,
                  capacities=capacities,
                  disconnected_capacities=disconnected_capacities,
                  halloffame=halloffame,
                  halloffame_fitness=halloffame_fitness,
                  euclidean_distance=euclidean_distance,
                  spread=spread)
        json.dump(cp, fp)

    return costs, CO2, prim, master_to_slave_vars, individual
def evalInd(individual, buildList, locator, extraCosts, extraCO2, extraPrim, solarFeat, ntwFeat, gv):
    """
    Evaluates an individual
    
    Parameters
    ----------
    individual : list
    buildList : list of buildings in the district
    pahthX : string
    extraX : float
        parameters previously computed
    solarFeat / ntwFeat : class solarFeatures / ntwFeatures
    
    Returns
    -------
    (costs, CO2, Prim) : tuple of floats
    
    """
    print "Evaluate an individual"
    print individual, "\n"
    
    print "Check the individual"
    nBuildings = len(buildList)
    cCheck.controlCheck(individual, nBuildings, gv)
    
    indCombi = sFn.readCombi(individual, gv)
    costs = extraCosts
    CO2 = extraCO2
    prim = extraPrim
    QUncoveredDesign = 0
    QUncoveredAnnual = 0

    print indCombi.count("0")
    print indCombi.count("1")
    
    if indCombi.count("0") == 0:
        fNameNtw = "Network_summary_result_all.csv"
    else:
        fNameNtw = "Network_summary_result_" + indCombi + ".csv"
    
    if indCombi.count("1") > 0:    
        Qheatmax = sFn.calcQmax(fNameNtw, locator.pathNtwRes, gv)
    else:
        Qheatmax = 0
    
    print Qheatmax, "Qheatmax in network"
    Qnom = Qheatmax * (1+gv.Qmargin_ntw)
    
    # Modify the individual with the extra GHP constraint
    try:
        cCheck.GHPCheck(individual, locator.pathRaw, Qnom, gv)
        print "GHP constraint checked \n"
    except:
        print "No GHP constraint check possible \n"

    
    # Export to context
    dicoSupply = readInd(individual, Qheatmax, locator, gv)
    dicoSupply.NETWORK_DATA_FILE = fNameNtw
    
    
    if dicoSupply.nBuildingsConnected > 1:
        if indCombi.count("0") == 0:
            dicoSupply.fNameTotalCSV = locator.pathRaw + "/Total.csv"
        else:
            dicoSupply.fNameTotalCSV = locator.pathTotalNtw + "/Total_" + indCombi + ".csv"
    else:
        dicoSupply.fNameTotalCSV = locator.pathSubsRes + "/Total_" + indCombi + ".csv"
    
    if indCombi.count("1") > 0:
        #print "Dummy evaluation of", dicoSupply.configKey
        #(slavePrim, slaveCO2, slaveCosts, QUncoveredDesign, QUncoveredAnnual) = sFn.dummyevaluate(individual)
        
        print "Slave routine on", dicoSupply.configKey
        (slavePrim, slaveCO2, slaveCosts, QUncoveredDesign, QUncoveredAnnual) = sM.slaveMain(locator, fNameNtw, dicoSupply, solarFeat, gv)
        print slaveCosts, slaveCO2, slavePrim, "slaveCosts, slaveCO2, slavePrim \n"
        
        costs += slaveCosts
        CO2 += slaveCO2
        prim += slavePrim
    
    else:
        print "No buildings connected to network \n"


    print "Add extra costs"
    (addCosts, addCO2, addPrim) = eM.addCosts(indCombi, buildList, locator, dicoSupply, QUncoveredDesign, QUncoveredAnnual, solarFeat, ntwFeat, gv)
    print addCosts, addCO2, addPrim, "addCosts, addCO2, addPrim \n"
    
    if gv.ZernezFlag == 1:
         coolCosts, coolCO2, coolPrim = 0,0,0
    else:
        (coolCosts, coolCO2, coolPrim) = coolMain.coolingMain(locator, dicoSupply.configKey, ntwFeat, dicoSupply.WasteServersHeatRecovery, gv)
        
    print coolCosts, coolCO2, coolPrim, "coolCosts, coolCO2, coolPrim \n"
    
    costs += addCosts + coolCosts
    CO2 += addCO2 + coolCO2
    prim += addPrim + coolPrim
    
    
    print "Evaluation of", dicoSupply.configKey, "done"
    print costs, CO2, prim, " = costs, CO2, prim \n"
    return (costs, CO2, prim)
예제 #6
0
def evaluation_main(individual, building_names, locator, extraCosts, extraCO2,
                    extraPrim, solar_features, network_features, gv, config,
                    prices, lca, ind_num, gen):
    """
    This function evaluates an individual

    :param individual: list with values of the individual
    :param building_names: list with names of buildings
    :param locator: locator class
    :param extraCosts: costs calculated before optimization of specific energy services
     (process heat and electricity)
    :param extraCO2: green house gas emissions calculated before optimization of specific energy services
     (process heat and electricity)
    :param extraPrim: primary energy calculated before optimization ofr specific energy services
     (process heat and electricity)
    :param solar_features: solar features call to class
    :param network_features: network features call to class
    :param gv: global variables class
    :param optimization_constants: class containing constants used in optimization
    :param config: configuration file
    :param prices: class of prices used in optimization
    :type individual: list
    :type building_names: list
    :type locator: string
    :type extraCosts: float
    :type extraCO2: float
    :type extraPrim: float
    :type solar_features: class
    :type network_features: class
    :type gv: class
    :type optimization_constants: class
    :type config: class
    :type prices: class
    :return: Resulting values of the objective function. costs, CO2, prim
    :rtype: tuple

    """
    # Check the consistency of the individual or create a new one
    individual = check_invalid(individual, len(building_names), config)

    # Initialize objective functions costs, CO2 and primary energy
    costs = extraCosts
    CO2 = extraCO2
    prim = extraPrim
    QUncoveredDesign = 0
    QUncoveredAnnual = 0

    # Create the string representation of the individual
    DHN_barcode, DCN_barcode, DHN_configuration, DCN_configuration = sFn.individual_to_barcode(
        individual, building_names)

    if DHN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_all_results_summary('all'),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()
    elif DHN_barcode.count("1") == 0:
        network_file_name_heating = "Network_summary_result_all.csv"
        Q_heating_max_W = 0
    else:
        network_file_name_heating = "Network_summary_result_" + hex(
            int(str(DHN_barcode), 2)) + ".csv"
        if not os.path.exists(
                locator.get_optimization_network_results_summary(DHN_barcode)):
            total_demand = sFn.createTotalNtwCsv(DHN_barcode, locator)
            building_names = total_demand.Name.values
            # Run the substation and distribution routines
            sMain.substation_main(locator,
                                  total_demand,
                                  building_names,
                                  DHN_configuration,
                                  DCN_configuration,
                                  Flag=True)
            nM.network_main(locator, total_demand, building_names, config, gv,
                            DHN_barcode)

        Q_DHNf_W = pd.read_csv(
            locator.get_optimization_network_results_summary(DHN_barcode),
            usecols=["Q_DHNf_W"]).values
        Q_heating_max_W = Q_DHNf_W.max()

    if DCN_barcode.count("1") == gv.num_tot_buildings:
        network_file_name_cooling = "Network_summary_result_all.csv"
        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_all_results_summary('all'),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()
    elif DCN_barcode.count("1") == 0:
        network_file_name_cooling = "Network_summary_result_all.csv"
        Q_cooling_max_W = 0
    else:
        network_file_name_cooling = "Network_summary_result_" + hex(
            int(str(DCN_barcode), 2)) + ".csv"

        if not os.path.exists(
                locator.get_optimization_network_results_summary(DCN_barcode)):
            total_demand = sFn.createTotalNtwCsv(DCN_barcode, locator)
            building_names = total_demand.Name.values

            # Run the substation and distribution routines
            sMain.substation_main(locator,
                                  total_demand,
                                  building_names,
                                  DHN_configuration,
                                  DCN_configuration,
                                  Flag=True)
            nM.network_main(locator, total_demand, building_names, config, gv,
                            DCN_barcode)

        if individual[
                N_HEAT *
                2] == 1:  # if heat recovery is ON, then only need to satisfy cooling load of space cooling and refrigeration
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=["Q_DCNf_space_cooling_and_refrigeration_W"]).values
        else:
            Q_DCNf_W = pd.read_csv(
                locator.get_optimization_network_results_summary(DCN_barcode),
                usecols=[
                    "Q_DCNf_space_cooling_data_center_and_refrigeration_W"
                ]).values
        Q_cooling_max_W = Q_DCNf_W.max()

    Q_heating_nom_W = Q_heating_max_W * (1 + Q_MARGIN_FOR_NETWORK)
    Q_cooling_nom_W = Q_cooling_max_W * (1 + Q_MARGIN_FOR_NETWORK)

    # Modify the individual with the extra GHP constraint
    try:
        cCheck.GHPCheck(individual, locator, Q_heating_nom_W, gv)
    except:
        print "No GHP constraint check possible \n"

    # Export to context
    master_to_slave_vars = calc_master_to_slave_variables(
        individual, Q_heating_max_W, Q_cooling_max_W, building_names, ind_num,
        gen)
    master_to_slave_vars.network_data_file_heating = network_file_name_heating
    master_to_slave_vars.network_data_file_cooling = network_file_name_cooling
    master_to_slave_vars.total_buildings = len(building_names)

    if master_to_slave_vars.number_of_buildings_connected_heating > 1:
        if DHN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DHN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DHN_barcode)

    if master_to_slave_vars.number_of_buildings_connected_cooling > 1:
        if DCN_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(DCN_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            DCN_barcode)

    if config.optimization.isheating:

        if DHN_barcode.count("1") > 0:

            (slavePrim, slaveCO2, slaveCosts, QUncoveredDesign,
             QUncoveredAnnual) = sM.slave_main(locator, master_to_slave_vars,
                                               solar_features, gv, config,
                                               prices, lca)
        else:

            slaveCO2 = 0
            slaveCosts = 0
            slavePrim = 0
    else:
        slaveCO2 = 0
        slaveCosts = 0
        slavePrim = 0

    costs += slaveCosts
    CO2 += slaveCO2
    prim += slavePrim

    if gv.ZernezFlag == 1:
        coolCosts, coolCO2, coolPrim = 0, 0, 0
    elif config.optimization.iscooling:
        reduced_timesteps_flag = False
        (coolCosts, coolCO2,
         coolPrim) = coolMain.coolingMain(locator, master_to_slave_vars,
                                          network_features, gv, prices, lca,
                                          config, reduced_timesteps_flag)
    else:
        coolCosts, coolCO2, coolPrim = 0, 0, 0

    print "Add extra costs"
    (addCosts, addCO2,
     addPrim) = eM.addCosts(DHN_barcode, DCN_barcode, building_names, locator,
                            master_to_slave_vars, QUncoveredDesign,
                            QUncoveredAnnual, solar_features, network_features,
                            gv, config, prices, lca)

    costs += addCosts + coolCosts
    CO2 += addCO2 + coolCO2
    prim += addPrim + coolPrim
    # Converting costs into float64 to avoid longer values
    costs = np.float64(costs)
    CO2 = np.float64(CO2)
    prim = np.float64(prim)

    print('Total costs = ' + str(costs))
    print('Total CO2 = ' + str(CO2))
    print('Total prim = ' + str(prim))

    return costs, CO2, prim, master_to_slave_vars, individual
예제 #7
0
def evaluation_main(individual, building_names, locator, extraCosts, extraCO2,
                    extraPrim, solar_features, network_features, gv):
    """
    This function evaluates an individual

    :param individual: list with values of the individual
    :param building_names: list with names of buildings
    :param locator: locator class
    :param extraCosts: costs calculated before optimization of specific energy services
     (process heat and electricity)
    :param extraCO2: green house gas emissions calculated before optimization of specific energy services
     (process heat and electricity)
    :param extraPrim: primary energy calculated before optimization ofr specific energy services
     (process heat and electricity)
    :param solar_features: solar features call to class
    :param network_features: network features call to class
    :param gv: global variables class
    :type individual: list
    :type building_names: list
    :type locator: string
    :type extraCosts: float
    :type extraCO2: float
    :type extraPrim: float
    :type solar_features: class
    :type network_features: class
    :type gv: class
    :return: Resulting values of the objective function. costs, CO2, prim
    :rtype: tuple

    """
    # Check the consistency of the individual or create a new one
    individual = check_invalid(individual, len(building_names), gv)

    # Initialize objective functions costs, CO2 and primary energy
    costs = extraCosts
    CO2 = extraCO2
    prim = extraPrim

    QUncoveredDesign = 0
    QUncoveredAnnual = 0

    # Create the string representation of the individual
    individual_barcode = sFn.individual_to_barcode(individual, gv)

    if individual_barcode.count("0") == 0:
        network_file_name = "Network_summary_result_all.csv"
    else:
        network_file_name = "Network_summary_result_" + individual_barcode + ".csv"

    if individual_barcode.count("1") > 0:
        Qheatmax = sFn.calcQmax(
            network_file_name,
            locator.get_optimization_network_results_folder(), gv)
    else:
        Qheatmax = 0

    print Qheatmax, "Qheatmax in distribution"
    Qnom = Qheatmax * (1 + gv.Qmargin_ntw)

    # Modify the individual with the extra GHP constraint
    try:
        cCheck.GHPCheck(individual, locator, Qnom, gv)
        print "GHP constraint checked \n"
    except:
        print "No GHP constraint check possible \n"

    # Export to context
    master_to_slave_vars = calc_master_to_slave_variables(
        individual, Qheatmax, locator, gv)
    master_to_slave_vars.NETWORK_DATA_FILE = network_file_name

    if master_to_slave_vars.nBuildingsConnected > 1:
        if individual_barcode.count("0") == 0:
            master_to_slave_vars.fNameTotalCSV = locator.get_total_demand()
        else:
            master_to_slave_vars.fNameTotalCSV = os.path.join(
                locator.get_optimization_network_totals_folder(),
                "Total_%(individual_barcode)s.csv" % locals())
    else:
        master_to_slave_vars.fNameTotalCSV = locator.get_optimization_substations_total_file(
            individual_barcode)

    if individual_barcode.count("1") > 0:

        print "Slave routine on", master_to_slave_vars.configKey
        (slavePrim, slaveCO2, slaveCosts, QUncoveredDesign,
         QUncoveredAnnual) = sM.slave_main(locator, master_to_slave_vars,
                                           solar_features, gv)
        costs += slaveCosts
        CO2 += slaveCO2
        prim += slavePrim

    else:
        print "No buildings connected to distribution \n"

    print "Add extra costs"
    (addCosts, addCO2,
     addPrim) = eM.addCosts(individual_barcode, building_names, locator,
                            master_to_slave_vars, QUncoveredDesign,
                            QUncoveredAnnual, solar_features, network_features,
                            gv)
    print addCosts, addCO2, addPrim, "addCosts, addCO2, addPrim \n"

    if gv.ZernezFlag == 1:
        coolCosts, coolCO2, coolPrim = 0, 0, 0
    else:
        (coolCosts, coolCO2, coolPrim) = coolMain.coolingMain(
            locator, master_to_slave_vars.configKey, network_features,
            master_to_slave_vars.WasteServersHeatRecovery, gv)

    print coolCosts, coolCO2, coolPrim, "coolCosts, coolCO2, coolPrim \n"

    costs += addCosts + coolCosts
    CO2 += addCO2 + coolCO2
    prim += addPrim + coolPrim

    print "Evaluation of", master_to_slave_vars.configKey, "done"
    print costs, CO2, prim, " = costs, CO2, prim \n"

    return costs, CO2, prim