def __call__(self): self.timeholder = TimeHolder(self.position, self._all_channel_regions, None, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) n_images = self._analyze(ca)
def __call__(self): hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) #self.setup_classifiers() #self.export_features = self.define_exp_features() self._analyze(ca) return ca
def __call__(self): self.timeholder = TimeHolder(self.position, self._all_channel_regions, self.datafile, self.meta_data, self.settings, self._frames, self.plate_id, well=None, site=None, **self._hdf_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) self._analyze(ca) return ca
def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good placke to read out the options # fils must not exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') # setup tracker if self.settings.get('Processing', 'tracking'): region = self.settings.get('Tracking', 'tracking_regionname') tropts = (self.settings.get('Tracking', 'tracking_maxobjectdistance'), self.settings.get('Tracking', 'tracking_maxsplitobjects'), self.settings.get('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) self._tes = EventSelection(self._tracker.graph, **self._es_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position = self.position, create_images = True, binning_factor = 1, detect_objects = self.settings.get('Processing', 'objectdetection')) self.setup_classifiers() self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings.get('Processing', 'tracking_synchronize_trajectories') and \ self.settings.get('Processing', 'tracking'): self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings.get('Output', 'export_object_counts'): self.export_object_counts() if self.settings.get('Output', 'export_object_details'): self.export_object_details() if self.settings.get('Output', 'export_file_names'): self.export_image_names() if self.settings.get('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings.get('Processing', 'tracking_synchronize_trajectories'): self.export_events() if self.settings.get('Output', 'export_track_data'): self.export_full_tracks() if self.settings.get('Output', 'export_tracking_as_dot'): self.export_graphviz() self.update_status({'text': 'export events...', 'max': 1, 'progress': 1}) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images'): self.export_gallery_images() try: intval = stopwatch.stop()/n_images*1000 except ZeroDivisionError: pass else: self.logger.info(" - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() # self.clear() return n_images
class PositionAnalyzer(PositionCore): def __init__(self, *args, **kw): super(PositionAnalyzer, self).__init__(*args, **kw) if not self.has_timelapse: self.settings.set('Processing', 'tracking', False) self._makedirs() self.add_file_handler(join(self._log_dir, "%s.log" %self.position), self._lvl.DEBUG) def _makedirs(self): assert isinstance(self.position, basestring) assert isinstance(self._out_dir, basestring) self._analyzed_dir = join(self._out_dir, "analyzed") if self.has_timelapse: self._position_dir = join(self._analyzed_dir, self.position) else: self._position_dir = self._analyzed_dir odirs = (self._analyzed_dir, join(self._out_dir, "log"), join(self._out_dir, "log", "_finished"), join(self._out_dir, "hdf5"), join(self._out_dir, "plots"), join(self._position_dir, "statistics"), join(self._position_dir, "gallery"), join(self._position_dir, "channel_gallery"), join(self._position_dir, "images"), join(self._position_dir, "images","_labels")) for odir in odirs: try: makedirs(odir) except os.error: # no permissions self.logger.error("mkdir %s: failed" %odir) else: self.logger.info("mkdir %s: ok" %odir) setattr(self, "_%s_dir" %basename(odir.lower()).strip("_"), odir) def setup_classifiers(self): sttg = self.settings # processing channel, color channel for p_channel, c_channel in self.ch_mapping.iteritems(): self.settings.set_section('Processing') if sttg.get2(self._resolve_name(p_channel, 'classification')): sttg.set_section('Classification') clf = CommonClassPredictor( clf_dir=sttg.get2(self._resolve_name(p_channel, 'classification_envpath')), name=p_channel, channels=self._channel_regions(p_channel), color_channel=c_channel) clf.importFromArff() clf.loadClassifier() self.classifiers[p_channel] = clf def _convert_tracking_duration(self, option_name): """Converts a tracking duration according to the unit and the mean time-lapse of the current position. Returns number of frames. """ value = self.settings.get(SECTION_NAME_TRACKING, option_name) unit = self.settings.get(SECTION_NAME_TRACKING, 'tracking_duration_unit') # get mean and stddev for the current position info = self.meta_data.get_timestamp_info(self.position) if unit == TRACKING_DURATION_UNIT_FRAMES or info is None: result = value elif unit == TRACKING_DURATION_UNIT_MINUTES: result = (value * 60.) / info[0] elif unit == TRACKING_DURATION_UNIT_SECONDS: result = value / info[0] else: raise ValueError("Wrong unit '%s' specified." %unit) return int(round(result)) @property def _es_options(self): transitions = eval(self.settings.get2('tracking_labeltransitions')) if not isinstance(transitions[0], tuple): transitions = (transitions, ) evopts = {'transitions': transitions, 'backward_labels': map(int, self.settings.get2('tracking_backwardlabels').split(',')), 'forward_labels': map(int, self.settings.get2('tracking_forwardlabels').split(',')), 'backward_check': self._convert_tracking_duration('tracking_backwardCheck'), 'forward_check': self._convert_tracking_duration('tracking_forwardCheck'), 'backward_range': self._convert_tracking_duration('tracking_backwardrange'), 'forward_range': self._convert_tracking_duration('tracking_forwardrange'), 'backward_range_min': self.settings.get2('tracking_backwardrange_min'), 'forward_range_min': self.settings.get2('tracking_forwardrange_min'), 'max_in_degree': self.settings.get2('tracking_maxindegree'), 'max_out_degree': self.settings.get2('tracking_maxoutdegree')} return evopts def define_exp_features(self): features = {} for name in self.processing_channels: region_features = {} for region in REGION_INFO.names[name.lower()]: # export all features extracted per regions if self.settings.get('Output', 'events_export_all_features') or \ self.settings.get('Output', 'export_track_data'): # None means all features region_features[region] = None # export selected features from settings else: region_features[region] = \ self.settings.get('General', '%s_featureextraction_exportfeaturenames' % name.lower()) features[name] = region_features return features def export_object_counts(self): fname = join(self._statistics_dir, 'P%s__object_counts.txt' % self.position) # at least the total count for primary is always exported ch_info = OrderedDict([('Primary', ('primary', [], []))]) for name, clf in self.classifiers.iteritems(): names = clf.class_names.values() colors = [clf.hexcolors[n] for n in names] ch_info[name] = (clf.regions, names, colors) self.timeholder.exportObjectCounts(fname, self.position, self.meta_data, ch_info) pplot_ymax = \ self.settings.get('Output', 'export_object_counts_ylim_max') # plot only for primary channel so far! self.timeholder.exportPopulationPlots(fname, self._plots_dir, self.position, self.meta_data, ch_info['Primary'], pplot_ymax) def export_object_details(self): fname = join(self._statistics_dir, 'P%s__object_details.txt' % self.position) self.timeholder.exportObjectDetails(fname, excel_style=False) fname = join(self._statistics_dir, 'P%s__object_details_excel.txt' % self.position) self.timeholder.exportObjectDetails(fname, excel_style=True) def export_image_names(self): self.timeholder.exportImageFileNames(self._statistics_dir, self.position, self._imagecontainer._importer, self.ch_mapping) def export_full_tracks(self): odir = join(self._statistics_dir, 'full') exporter = EventExporter(self.meta_data) exporter.full_tracks(self.timeholder, self._tes.visitor_data, self.position, odir) def export_graphviz(self, channel_name='Primary', region_name='primary'): filename = 'tracking_graph___P%s.dot' %self.position exporter = TrackExporter() exporter.graphviz_dot(join(self._statistics_dir, filename), self._tracker) sample_holders = OrderedDict() for frame in self.timeholder.keys(): channel = self.timeholder[frame][channel_name] sample_holders[frame] = channel.get_region(region_name) filename = join(self._statistics_dir, filename.replace('.dot', '_features.csv')) exporter.tracking_data(filename, sample_holders) def export_gallery_images(self): for ch_name in self.processing_channels: cutter_in = join(self._images_dir, ch_name) if isdir(cutter_in): cutter_out = join(self._gallery_dir, ch_name) self.logger.info("running Cutter for '%s'..." %ch_name) image_size = \ self.settings.get('Output', 'events_gallery_image_size') EventGallery(self._tes, cutter_in, self.position, cutter_out, self.meta_data, oneFilePerTrack=True, size=(image_size, image_size)) # FIXME: be careful here. normally only raw images are # used for the cutter and can be deleted # afterwards shutil.rmtree(cutter_in, ignore_errors=True) def export_tracks_hdf5(self): """Save tracking data to hdf file""" self.logger.debug("--- serializing tracking start") self.timeholder.serialize_tracking(self._tes.graph) self.logger.debug("--- serializing tracking ok") def export_events(self): """Export and save event selceciton data""" exporter = EventExporter(self.meta_data) # writes to the event folder odir = join(self._statistics_dir, "events") exporter.track_features(self.timeholder, self._tes.visitor_data, self.export_features, self.position, odir) self.logger.debug("--- visitor analysis ok") # writes event data to hdf5 self.timeholder.serialize_events(self._tes) self.logger.debug("--- serializing events ok") def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good placke to read out the options # fils must not exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') # setup tracker if self.settings.get('Processing', 'tracking'): region = self.settings.get('Tracking', 'tracking_regionname') tropts = (self.settings.get('Tracking', 'tracking_maxobjectdistance'), self.settings.get('Tracking', 'tracking_maxsplitobjects'), self.settings.get('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) self._tes = EventSelection(self._tracker.graph, **self._es_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position = self.position, create_images = True, binning_factor = 1, detect_objects = self.settings.get('Processing', 'objectdetection')) self.setup_classifiers() self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings.get('Processing', 'tracking_synchronize_trajectories') and \ self.settings.get('Processing', 'tracking'): self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings.get('Output', 'export_object_counts'): self.export_object_counts() if self.settings.get('Output', 'export_object_details'): self.export_object_details() if self.settings.get('Output', 'export_file_names'): self.export_image_names() if self.settings.get('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings.get('Processing', 'tracking_synchronize_trajectories'): self.export_events() if self.settings.get('Output', 'export_track_data'): self.export_full_tracks() if self.settings.get('Output', 'export_tracking_as_dot'): self.export_graphviz() self.update_status({'text': 'export events...', 'max': 1, 'progress': 1}) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images'): self.export_gallery_images() try: intval = stopwatch.stop()/n_images*1000 except ZeroDivisionError: pass else: self.logger.info(" - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() # self.clear() return n_images @property def hdf5_filename(self): return self.timeholder.hdf5_filename def touch_finished(self, times=None): """Writes an empty file to mark this position as finished""" fname = join(self._finished_dir, '%s__finished.txt' % self.position) with open(fname, "w") as f: os.utime(fname, times) def clear(self): # closes hdf5 self.timeholder.close_all() def _analyze(self, cellanalyzer): super(PositionAnalyzer, self)._analyze() n_images = 0 stopwatch = StopWatch(start=True) crd = Coordinate(self.plate_id, self.position, self._frames, list(set(self.ch_mapping.values()))) for frame, channels in self._imagecontainer( \ crd, interrupt_channel=True, interrupt_zslice=True): if self.is_aborted(): self.clear() return 0 else: txt = 'T %d (%d/%d)' %(frame, self._frames.index(frame)+1, len(self._frames)) self.update_status({'progress': self._frames.index(frame)+1, 'text': txt, 'interval': stopwatch.interim()}) stopwatch.reset(start=True) cellanalyzer.initTimepoint(frame) self.register_channels(cellanalyzer, channels) cellanalyzer.process() n_images += 1 images = [] if self.settings.get('Processing', 'tracking'): region = self.settings.get('Tracking', 'tracking_regionname') samples = self.timeholder[frame][PrimaryChannel.NAME].get_region(region) self._tracker.track_next_frame(frame, samples) if self.settings.get('Tracking', 'tracking_visualization'): size = cellanalyzer.getImageSize(PrimaryChannel.NAME) nframes = self.settings.get('Tracking', 'tracking_visualize_track_length') radius = self.settings.get('Tracking', 'tracking_centroid_radius') img_conn, img_split = self._tracker.render_tracks( frame, size, nframes, radius) images += [(img_conn, '#FFFF00', 1.0), (img_split, '#00FFFF', 1.0)] for clf in self.classifiers.itervalues(): cellanalyzer.classify_objects(clf) ############################################################## # FIXME - part for browser if not self._myhack is None: self.render_browser(cellanalyzer) ############################################################## self.settings.set_section('General') self.render_classification_images(cellanalyzer, images, frame) self.render_contour_images(cellanalyzer, images, frame) if self.settings.get('Output', 'rendering_channel_gallery'): self.render_channel_gallery(cellanalyzer, frame) if self.settings.get('Output', 'rendering_labels_discwrite'): cellanalyzer.exportLabelImages(self._labels_dir) self.logger.info(" - Frame %d, duration (ms): %3d" \ %(frame, stopwatch.interim()*1000)) cellanalyzer.purge(features=self.export_features) return n_images def render_channel_gallery(self, cellanalyzer, frame): for channel in cellanalyzer.virtual_channels.itervalues(): chgal = ChannelGallery(channel, frame, self._channel_gallery_dir) chgal.make_gallery() def render_contour_images(self, ca, images, frame): for region, render_par in self.settings.get2('rendering').iteritems(): out_dir = join(self._images_dir, region) write = self.settings.get('Output', 'rendering_contours_discwrite') if region not in self.CHANNELS.keys(): img, fname = ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=write, images=images) msg = 'PL %s - P %s - T %05d' %(self.plate_id, self.position, frame) self.set_image(img, msg, fname, region, 50) # gallery images are treated differenty else: ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=True) def render_classification_images(self, cellanalyzer, images, frame): for region, render_par in self.settings.get2('rendering_class').iteritems(): out_images = join(self._images_dir, region) write = self.settings.get('Output', 'rendering_class_discwrite') img_rgb, fname = cellanalyzer.render(out_images, dctRenderInfo=render_par, writeToDisc=write, images=images) msg = 'PL %s - P %s - T %05d' %(self.plate_id, self.position, frame) self.set_image(img_rgb, msg, fname, region, 50) def render_browser(self, cellanalyzer): d = {} for name in cellanalyzer.get_channel_names(): channel = cellanalyzer.get_channel(name) d[channel.strChannelId] = channel.meta_image.image self._myhack.show_image(d) channel_name, region_name = self._myhack._object_region channel = cellanalyzer.get_channel(channel_name) if channel.has_region(region_name): region = channel.get_region(region_name) coords = {} for obj_id, obj in region.iteritems(): coords[obj_id] = obj.crack_contour self._myhack.set_coords(coords)
class PositionAnalyzer(PositionCore): def __init__(self, *args, **kw): super(PositionAnalyzer, self).__init__(*args, **kw) if not self.has_timelapse: self.settings.set('Processing', 'tracking', False) self._makedirs() self.add_file_handler(join(self._log_dir, "%s.log" %self.position), self.Levels.DEBUG) def _makedirs(self): assert isinstance(self.position, basestring) assert isinstance(self._out_dir, basestring) self._analyzed_dir = join(self._out_dir, "analyzed") if self.has_timelapse: self._position_dir = join(self._analyzed_dir, self.position) else: self._position_dir = self._analyzed_dir odirs = (self._analyzed_dir, join(self._out_dir, "log"), join(self._out_dir, "log", "_finished"), join(self._out_dir, "hdf5"), join(self._out_dir, "plots"), join(self._position_dir, "statistics"), join(self._position_dir, "tc3"), join(self._position_dir, "gallery"), join(self._position_dir, "channel_gallery"), join(self._position_dir, "images"), join(self._position_dir, "images","_labels")) for odir in odirs: try: makedirs(odir) except os.error: # no permissions self.logger.error("mkdir %s: failed" %odir) else: self.logger.info("mkdir %s: ok" %odir) setattr(self, "_%s_dir" %basename(odir.lower()).strip("_"), odir) def setup_classifiers(self): sttg = self.settings # processing channel, color channel for p_channel, c_channel in self.ch_mapping.iteritems(): self.settings.set_section('Processing') if sttg.get2(self._resolve_name(p_channel, 'classification')): chreg = self._channel_regions(p_channel) if sttg("EventSelection", "unsupervised_event_selection"): nclusters = sttg("EventSelection", "num_clusters") self.classifiers[p_channel] = ClassDefinitionUnsup( \ nclusters, chreg) else: sttg.set_section('Classification') clf = CommonClassPredictor( clf_dir=sttg.get2(self._resolve_name(p_channel, 'classification_envpath')), name=p_channel, channels=chreg, color_channel=c_channel) clf.importFromArff() clf.loadClassifier() self.classifiers[p_channel] = clf @property def _transitions(self): if self.settings.get('EventSelection', 'unsupervised_event_selection'): transitions = np.array((0, 1)) else: try: transitions = np.array(eval(self.settings.get('EventSelection', 'labeltransitions'))) transitions.reshape((-1, 2)) except Exception as e: raise RuntimeError(("Make sure that transitions are of the form " "'int, int' or '(int, int), (int, int)' i.e " "2-int-tuple or a list of 2-int-tuples")) return transitions def setup_eventselection(self, graph): """Setup the method for event selection.""" opts = {'transitions': self._transitions, 'backward_range': self._convert_tracking_duration('backwardrange'), 'forward_range': self._convert_tracking_duration('forwardrange'), 'max_in_degree': self.settings.get('EventSelection', 'maxindegree'), 'max_out_degree': self.settings.get('EventSelection', 'maxoutdegree')} if self.settings.get('EventSelection', 'supervised_event_selection'): opts.update({'backward_labels': [int(i) for i in self.settings.get('EventSelection', 'backwardlabels').split(',')], 'forward_labels': [int(i) for i in self.settings.get('EventSelection', 'forwardlabels').split(',')], 'backward_range_min': self.settings.get('EventSelection', 'backwardrange_min'), 'forward_range_min': self.settings.get('EventSelection', 'forwardrange_min'), 'backward_check': self._convert_tracking_duration('backwardCheck'), 'forward_check': self._convert_tracking_duration('forwardCheck')}) es = EventSelection(graph, **opts) elif self.settings.get('EventSelection', 'unsupervised_event_selection'): cld = self.classifiers.values()[0] # only one classdef in case of UES opts.update({'forward_check': self._convert_tracking_duration('min_event_duration'), 'forward_labels': (1, ), 'backward_check': -1, # unsused for unsupervised usecase 'backward_labels': (0, ), 'num_clusters': self.settings.get('EventSelection', 'num_clusters'), 'min_cluster_size': self.settings.get('EventSelection', 'min_cluster_size'), 'classdef': cld}) es = UnsupervisedEventSelection(graph, **opts) return es def _convert_tracking_duration(self, option_name): """Converts a tracking duration according to the unit and the mean time-lapse of the current position. Returns number of frames. """ value = self.settings.get('EventSelection', option_name) unit = self.settings.get('EventSelection', 'duration_unit') # get mean and stddev for the current position info = self.meta_data.get_timestamp_info(self.position) if unit == TimeConverter.FRAMES or info is None: result = value elif unit == TimeConverter.MINUTES: result = (value * 60.) / info[0] elif unit == TimeConverter.SECONDS: result = value / info[0] else: raise ValueError("Wrong unit '%s' specified." %unit) return int(round(result)) def define_exp_features(self): features = {} for name in self.processing_channels: region_features = {} for region in MetaPluginManager().region_info.names[name.lower()]: if name is self.MERGED_CHANNEL: continue # export all features extracted per regions if self.settings.get('Output', 'events_export_all_features') or \ self.settings.get('Output', 'export_track_data'): # None means all features region_features[region] = None # export selected features from settings else: region_features[region] = \ self.settings.get('General', '%s_featureextraction_exportfeaturenames' % name.lower()) features[name] = region_features # special case for merged channel if name is self.MERGED_CHANNEL: mftrs = list() for channel, region in self._channel_regions(name).iteritems(): if features[channel][region] is None: mftrs = None else: for feature in features[channel][region]: mftrs.append("_".join((channel, region, feature))) region_features[self._all_channel_regions[name].values()] = mftrs features[name] = region_features return features def export_object_counts(self): fname = join(self._statistics_dir, 'P%s__object_counts.txt' % self.position) ch_info = OrderedDict() for name, clf in self.classifiers.iteritems(): names = clf.class_names.values() colors = [clf.hexcolors[n] for n in names] ch_info[name] = (clf.regions, names, colors) # if no classifier has been loaded, no counts can be exported. if len(ch_info) == 0: return self.timeholder.exportObjectCounts(fname, self.position, self.meta_data, ch_info) pplot_ymax = \ self.settings.get('Output', 'export_object_counts_ylim_max') self.timeholder.exportPopulationPlots(ch_info, self._plots_dir, self.plate_id, self.position, ymax=pplot_ymax) def export_object_details(self): fname = join(self._statistics_dir, 'P%s__object_details.txt' % self.position) self.timeholder.exportObjectDetails(fname) def export_image_names(self): self.timeholder.exportImageFileNames(self._statistics_dir, self.position, self._imagecontainer._importer, self.ch_mapping) def export_full_tracks(self): odir = join(self._statistics_dir, 'full') exporter = EventExporter(self.meta_data) exporter.full_tracks(self.timeholder, self._tes.visitor_data, self.position, odir) def export_graphviz(self, channel_name='Primary', region_name='primary'): filename = 'tracking_graph___P%s.dot' %self.position exporter = TrackExporter() exporter.graphviz_dot(join(self._statistics_dir, filename), self._tracker) sample_holders = OrderedDict() for frame in self.timeholder.keys(): channel = self.timeholder[frame][channel_name] sample_holders[frame] = channel.get_region(region_name) filename = join(self._statistics_dir, filename.replace('.dot', '_features.csv')) exporter.tracking_data(filename, sample_holders) def export_gallery_images(self): for ch_name in self.processing_channels: cutter_in = join(self._images_dir, ch_name.lower()) if not isdir(cutter_in): self.logger.warning('directory not found (%s)' %cutter_in) self.logger.warning('can not write the gallery images') else: cutter_out = join(self._gallery_dir, ch_name.lower()) self.logger.info("running Cutter for '%s'..." %ch_name) image_size = \ self.settings.get('Output', 'events_gallery_image_size') TrackGallery(self._tes.centers(), cutter_in, cutter_out, self.position, size=image_size) # FIXME: be careful here. normally only raw images are # used for the cutter and can be deleted # afterwards shutil.rmtree(cutter_in, ignore_errors=True) def export_tracks_hdf5(self): """Save tracking data to hdf file""" self.logger.debug("--- serializing tracking start") self.timeholder.serialize_tracking(self._tracker.graph) self.logger.debug("--- serializing tracking ok") def export_events(self): """Export and save event selection data""" exporter = EventExporter(self.meta_data) # writes to the event folder odir = join(self._statistics_dir, "events") exporter.track_features(self.timeholder, self._tes.visitor_data, self.export_features, self.position, odir) self.logger.debug("--- serializing events ok") def export_events_hdf5(self): # writes event data to hdf5 self.timeholder.serialize_events(self._tes) def export_tc3(self): t_mean = self.meta_data.get_timestamp_info(self.position)[0] tu = TimeConverter(t_mean, TimeConverter.SECONDS) increment = self.settings('General', 'frameincrement') t_step = tu.sec2min(t_mean)*increment nclusters = self.settings.get('EventSelection', 'num_clusters') exporter = TC3Exporter(self._tes.tc3data, self._tc3_dir, nclusters, t_step, TimeConverter.MINUTES, self.position) exporter() def export_classlabels(self): """Save classlabels of each object to the hdf file.""" # function works for supervised and unuspervised case for channels in self.timeholder.itervalues(): for chname, classifier in self.classifiers.iteritems(): holder = channels[chname].get_region(classifier.regions) if classifier.feature_names is None: # special for unsupervised case classifier.feature_names = holder.feature_names self.timeholder.save_classlabels(channels[chname], holder, classifier) def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good place to read out the options # file does not have to exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position = self.position, create_images = True, binning_factor = 1, detect_objects = self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if self.settings('EventSelection', 'unsupervised_event_selection'): graph = self._tracker.graph elif evchannel != PrimaryChannel.NAME or \ region != self.settings("Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Output', 'export_object_counts') and \ self.settings('EventSelection', 'supervised_event_selection'): # no object counts in case of unsupervised event selection self.export_object_counts() if self.settings('Output', 'export_object_details'): self.export_object_details() if self.settings('Output', 'export_file_names'): self.export_image_names() if self.settings('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings('Output', 'hdf5_include_events'): self.export_events_hdf5() if self.settings('Output', "export_events"): if self.settings('Processing', 'eventselection'): self.export_events() if self.settings('EventSelection', 'unsupervised_event_selection'): self.export_tc3() if self.settings('Output', 'export_track_data'): self.export_full_tracks() if self.settings('Output', 'export_tracking_as_dot'): self.export_graphviz(channel_name =PrimaryChannel.NAME,\ region_name =self._all_channel_regions[PrimaryChannel.NAME][PrimaryChannel.NAME]) self.export_classlabels() self.update_status({'text': 'export events...', 'max': 1, 'progress': 1}) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images') and \ self.settings.get('Processing', 'eventselection'): self.export_gallery_images() try: intval = stopwatch.stop()/n_images*1000 except ZeroDivisionError: pass else: self.logger.info(" - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() self.clear() return n_images @property def hdf5_filename(self): return self.timeholder.hdf5_filename def touch_finished(self, times=None): """Writes an empty file to mark this position as finished""" fname = join(self._finished_dir, '%s__finished.txt' % self.position) with open(fname, "w") as f: os.utime(fname, times) def clear(self): # closes if self.timeholder is not None: self.timeholder.close_all() # close and remove handlers from logging object self.close() def _analyze(self, cellanalyzer): super(PositionAnalyzer, self)._analyze() n_images = 0 stopwatch = StopWatch(start=True) crd = Coordinate(self.plate_id, self.position, self._frames, list(set(self.ch_mapping.values()))) minimal_effort = self.settings.get('Output', 'minimal_effort') and self.settings.get('Output', 'hdf5_reuse') for frame, channels in self._imagecontainer( \ crd, interrupt_channel=True, interrupt_zslice=True): if self.is_aborted(): self.clear() return 0 else: txt = 'T %d (%d/%d)' %(frame, self._frames.index(frame)+1, len(self._frames)) self.update_status({'progress': self._frames.index(frame)+1, 'text': txt, 'interval': stopwatch.interim()}) stopwatch.reset(start=True) cellanalyzer.initTimepoint(frame) self.register_channels(cellanalyzer, channels) cellanalyzer.process() self.logger.info(" - Frame %d, cellanalyzer.process (ms): %3d" \ %(frame, stopwatch.interval()*1000)) n_images += 1 images = [] if self.settings('Processing', 'tracking'): region = self.settings('Tracking', 'region') samples = self.timeholder[frame][PrimaryChannel.NAME].get_region(region) self._tracker.track_next_frame(frame, samples) if self.settings('Tracking', 'tracking_visualization'): size = cellanalyzer.getImageSize(PrimaryChannel.NAME) nframes = self.settings('Tracking', 'tracking_visualize_track_length') radius = self.settings('Tracking', 'tracking_centroid_radius') img_conn, img_split = self._tracker.render_tracks( frame, size, nframes, radius) images += [(img_conn, '#FFFF00', 1.0), (img_split, '#00FFFF', 1.0)] self.logger.info(" - Frame %d, Tracking (ms): %3d" \ %(frame, stopwatch.interval()*1000)) # can't cluster on a per frame basis if self.settings("EventSelection", "supervised_event_selection"): for clf in self.classifiers.itervalues(): cellanalyzer.classify_objects(clf) self.logger.info(" - Frame %d, Classification (ms): %3d" \ % (frame, stopwatch.interval()*1000)) self.settings.set_section('General') # want emit all images at once if not minimal_effort: imgs = {} imgs.update(self.render_classification_images(cellanalyzer, images, frame)) imgs.update(self.render_contour_images(cellanalyzer, images, frame)) msg = 'PL %s - P %s - T %05d' %(self.plate_id, self.position, frame) self.set_image(imgs, msg, 50) if self.settings('Output', 'rendering_channel_gallery'): self.render_channel_gallery(cellanalyzer, frame) if self.settings('Output', 'rendering_labels_discwrite'): cellanalyzer.exportLabelImages(self._labels_dir) cellanalyzer.purge(features=self.export_features) self.logger.info(" - Frame %d, rest (ms): %3d" \ %(frame, stopwatch.interval()*1000)) self.logger.info(" - Frame %d, duration (ms): %3d" \ %(frame, stopwatch.interim()*1000)) return n_images def render_channel_gallery(self, cellanalyzer, frame): for channel in cellanalyzer.virtual_channels.itervalues(): chgal = ChannelGallery(channel, frame, self._channel_gallery_dir) chgal.make_gallery() def render_contour_images(self, ca, images, frame): images_ = dict() for region, render_par in self.settings.get2('rendering').iteritems(): out_dir = join(self._images_dir, region) write = self.settings('Output', 'rendering_contours_discwrite') if region not in self.CHANNELS.keys(): img, _ = ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=write, images=images) images_[region] = img # gallery images are treated differenty else: ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=True) return images_ def render_classification_images(self, cellanalyzer, images, frame): images_ = dict() for region, render_par in self.settings.get2('rendering_class').iteritems(): out_images = join(self._images_dir, region) write = self.settings('Output', 'rendering_class_discwrite') image, _ = cellanalyzer.render(out_images, dctRenderInfo=render_par, writeToDisc=write, images=images) images_[region] = image return images_
def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good place to read out the options # file does not have to exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position = self.position, create_images = True, binning_factor = 1, detect_objects = self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if self.settings('EventSelection', 'unsupervised_event_selection'): graph = self._tracker.graph elif evchannel != PrimaryChannel.NAME or \ region != self.settings("Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Output', 'export_object_counts') and \ self.settings('EventSelection', 'supervised_event_selection'): # no object counts in case of unsupervised event selection self.export_object_counts() if self.settings('Output', 'export_object_details'): self.export_object_details() if self.settings('Output', 'export_file_names'): self.export_image_names() if self.settings('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings('Output', 'hdf5_include_events'): self.export_events_hdf5() if self.settings('Output', "export_events"): if self.settings('Processing', 'eventselection'): self.export_events() if self.settings('EventSelection', 'unsupervised_event_selection'): self.export_tc3() if self.settings('Output', 'export_track_data'): self.export_full_tracks() if self.settings('Output', 'export_tracking_as_dot'): self.export_graphviz(channel_name =PrimaryChannel.NAME,\ region_name =self._all_channel_regions[PrimaryChannel.NAME][PrimaryChannel.NAME]) self.export_classlabels() self.update_status({'text': 'export events...', 'max': 1, 'progress': 1}) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images') and \ self.settings.get('Processing', 'eventselection'): self.export_gallery_images() try: intval = stopwatch.stop()/n_images*1000 except ZeroDivisionError: pass else: self.logger.info(" - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() self.clear() return n_images
class PositionAnalyzer(PositionCore): def __init__(self, *args, **kw): super(PositionAnalyzer, self).__init__(*args, **kw) if not self.has_timelapse: self.settings.set('Processing', 'tracking', False) self._makedirs() self.add_file_handler(join(self._log_dir, "%s.log" %self.position), self.Levels.DEBUG) def _makedirs(self): assert isinstance(self.position, basestring) assert isinstance(self._out_dir, basestring) self._analyzed_dir = join(self._out_dir, "analyzed") if self.has_timelapse: self._position_dir = join(self._analyzed_dir, self.position) else: self._position_dir = self._analyzed_dir odirs = (self._analyzed_dir, join(self._out_dir, "log"), join(self._out_dir, "log", "_finished"), join(self._out_dir, "hdf5"), join(self._out_dir, "plots"), join(self._position_dir, "statistics"), join(self._position_dir, "tc3"), join(self._position_dir, "gallery"), join(self._position_dir, "channel_gallery"), join(self._position_dir, "images"), join(self._position_dir, "images","_labels")) for odir in odirs: try: makedirs(odir) except os.error: # no permissions self.logger.error("mkdir %s: failed" %odir) else: self.logger.info("mkdir %s: ok" %odir) setattr(self, "_%s_dir" %basename(odir.lower()).strip("_"), odir) def setup_classifiers(self): sttg = self.settings # processing channel, color channel for p_channel, c_channel in self.ch_mapping.iteritems(): self.settings.set_section('Processing') if sttg.get2(self._resolve_name(p_channel, 'classification')): chreg = self._channel_regions(p_channel) if sttg("EventSelection", "unsupervised_event_selection"): nclusters = sttg("EventSelection", "num_clusters") self.classifiers[p_channel] = ClassDefinitionUnsup( \ nclusters, chreg) else: sttg.set_section('Classification') clf = CommonClassPredictor( clf_dir=sttg.get2(self._resolve_name(p_channel, 'classification_envpath')), name=p_channel, channels=chreg, color_channel=c_channel) clf.importFromArff() clf.loadClassifier() self.classifiers[p_channel] = clf @property def _transitions(self): if self.settings.get('EventSelection', 'unsupervised_event_selection'): transitions = np.array(((0, 1), )) else: try: transitions = np.array(eval(self.settings.get('EventSelection', 'labeltransitions'))) transitions.reshape((-1, 2)) except Exception as e: raise RuntimeError(("Make sure that transitions are of the form " "'int, int' or '(int, int), (int, int)' i.e " "2-int-tuple or a list of 2-int-tuples")) return transitions def setup_eventselection(self, graph): """Setup the method for event selection.""" opts = {'transitions': self._transitions, 'backward_range': self._convert_tracking_duration('backwardrange'), 'forward_range': self._convert_tracking_duration('forwardrange'), 'max_in_degree': self.settings.get('EventSelection', 'maxindegree'), 'max_out_degree': self.settings.get('EventSelection', 'maxoutdegree')} if self.settings.get('EventSelection', 'supervised_event_selection'): opts.update({'backward_labels': [int(i) for i in self.settings.get('EventSelection', 'backwardlabels').split(',')], 'forward_labels': [int(i) for i in self.settings.get('EventSelection', 'forwardlabels').split(',')], 'backward_range_min': self.settings.get('EventSelection', 'backwardrange_min'), 'forward_range_min': self.settings.get('EventSelection', 'forwardrange_min'), 'backward_check': self._convert_tracking_duration('backwardCheck'), 'forward_check': self._convert_tracking_duration('forwardCheck')}) es = EventSelection(graph, **opts) elif self.settings.get('EventSelection', 'unsupervised_event_selection'): cld = self.classifiers.values()[0] # only one classdef in case of UES opts.update({'forward_check': self._convert_tracking_duration('min_event_duration'), 'forward_labels': (1, ), 'backward_check': -1, # unsused for unsupervised usecase 'backward_labels': (0, ), 'num_clusters': self.settings.get('EventSelection', 'num_clusters'), 'min_cluster_size': self.settings.get('EventSelection', 'min_cluster_size'), 'classdef': cld}) es = UnsupervisedEventSelection(graph, **opts) return es def _convert_tracking_duration(self, option_name): """Converts a tracking duration according to the unit and the mean time-lapse of the current position. Returns number of frames. """ value = self.settings.get('EventSelection', option_name) unit = self.settings.get('EventSelection', 'duration_unit') # get mean and stddev for the current position info = self.meta_data.get_timestamp_info(self.position) if unit == TimeConverter.FRAMES or info is None: result = value elif unit == TimeConverter.MINUTES: result = (value * 60.) / info[0] elif unit == TimeConverter.SECONDS: result = value / info[0] else: raise ValueError("Wrong unit '%s' specified." %unit) return int(round(result)) def define_exp_features(self): features = {} for name in self.processing_channels: region_features = {} for region in MetaPluginManager().region_info.names[name.lower()]: if name is self.MERGED_CHANNEL: continue # export all features extracted per regions if self.settings.get('Output', 'events_export_all_features') or \ self.settings.get('Output', 'export_track_data'): # None means all features region_features[region] = None # export selected features from settings else: region_features[region] = \ self.settings.get('General', '%s_featureextraction_exportfeaturenames' % name.lower()) features[name] = region_features # special case for merged channel if name is self.MERGED_CHANNEL: mftrs = list() for channel, region in self._channel_regions(name).iteritems(): if features[channel][region] is None: mftrs = None else: for feature in features[channel][region]: mftrs.append("_".join((channel, region, feature))) region_features[self._all_channel_regions[name].values()] = mftrs features[name] = region_features return features def export_object_counts(self): fname = join(self._statistics_dir, 'P%s__object_counts.txt' % self.position) ch_info = OrderedDict() for name, clf in self.classifiers.iteritems(): names = clf.class_names.values() colors = [clf.hexcolors[n] for n in names] ch_info[name] = (clf.regions, names, colors) # if no classifier has been loaded, no counts can be exported. if len(ch_info) == 0: return self.timeholder.exportObjectCounts(fname, self.position, self.meta_data, ch_info) pplot_ymax = \ self.settings.get('Output', 'export_object_counts_ylim_max') self.timeholder.exportPopulationPlots(ch_info, self._plots_dir, self.plate_id, self.position, ymax=pplot_ymax) def export_object_details(self): fname = join(self._statistics_dir, 'P%s__object_details.txt' % self.position) self.timeholder.exportObjectDetails(fname) def export_image_names(self): self.timeholder.exportImageFileNames(self._statistics_dir, self.position, self._imagecontainer._importer, self.ch_mapping) def export_full_tracks(self): odir = join(self._statistics_dir, 'full') exporter = EventExporter(self.meta_data) exporter.full_tracks(self.timeholder, self._tes.visitor_data, self.position, odir) def export_graphviz(self, channel_name='Primary', region_name='primary'): filename = 'tracking_graph___P%s.dot' %self.position exporter = TrackExporter() exporter.graphviz_dot(join(self._statistics_dir, filename), self._tracker) sample_holders = OrderedDict() for frame in self.timeholder.keys(): channel = self.timeholder[frame][channel_name] sample_holders[frame] = channel.get_region(region_name) filename = join(self._statistics_dir, filename.replace('.dot', '_features.csv')) exporter.tracking_data(filename, sample_holders) def export_gallery_images(self): for ch_name in self.processing_channels: cutter_in = join(self._images_dir, ch_name.lower()) if not isdir(cutter_in): self.logger.warning('directory not found (%s)' %cutter_in) self.logger.warning('can not write the gallery images') else: cutter_out = join(self._gallery_dir, ch_name.lower()) self.logger.info("running Cutter for '%s'..." %ch_name) image_size = \ self.settings.get('Output', 'events_gallery_image_size') TrackGallery(self._tes.centers(), cutter_in, cutter_out, self.position, size=image_size) # FIXME: be careful here. normally only raw images are # used for the cutter and can be deleted # afterwards shutil.rmtree(cutter_in, ignore_errors=True) def export_tracks_hdf5(self): """Save tracking data to hdf file""" self.logger.debug("--- serializing tracking start") self.timeholder.serialize_tracking(self._tracker.graph) self.logger.debug("--- serializing tracking ok") def export_events(self): """Export and save event selection data""" exporter = EventExporter(self.meta_data) # writes to the event folder odir = join(self._statistics_dir, "events") exporter.track_features(self.timeholder, self._tes.visitor_data, self.export_features, self.position, odir) self.logger.debug("--- serializing events ok") def export_events_hdf5(self): # writes event data to hdf5 self.timeholder.serialize_events(self._tes) def export_tc3(self): t_mean = self.meta_data.get_timestamp_info(self.position)[0] tu = TimeConverter(t_mean, TimeConverter.SECONDS) increment = self.settings('General', 'frameincrement') t_step = tu.sec2min(t_mean)*increment nclusters = self.settings.get('EventSelection', 'num_clusters') exporter = TC3Exporter(self._tes.tc3data, self._tc3_dir, nclusters, t_step, TimeConverter.MINUTES, self.position) exporter() def export_classlabels(self): """Save classlabels of each object to the hdf file.""" # function works for supervised and unuspervised case for channels in self.timeholder.itervalues(): for chname, classifier in self.classifiers.iteritems(): holder = channels[chname].get_region(classifier.regions) if classifier.feature_names is None: # special for unsupervised case classifier.feature_names = holder.feature_names self.timeholder.save_classlabels(channels[chname], holder, classifier) def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good place to read out the options # file does not have to exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position = self.position, create_images = True, binning_factor = 1, detect_objects = self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if self.settings('EventSelection', 'unsupervised_event_selection'): graph = self._tracker.graph elif evchannel != PrimaryChannel.NAME or \ region != self.settings("Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Output', 'export_object_counts') and \ self.settings('EventSelection', 'supervised_event_selection'): # no object counts in case of unsupervised event selection self.export_object_counts() if self.settings('Output', 'export_object_details'): self.export_object_details() if self.settings('Output', 'export_file_names'): self.export_image_names() if self.settings('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings('Output', 'hdf5_include_events'): self.export_events_hdf5() if self.settings('Output', "export_events"): if self.settings('Processing', 'eventselection'): self.export_events() if self.settings('EventSelection', 'unsupervised_event_selection'): self.export_tc3() if self.settings('Output', 'export_track_data'): self.export_full_tracks() if self.settings('Output', 'export_tracking_as_dot'): self.export_graphviz(channel_name =PrimaryChannel.NAME,\ region_name =self._all_channel_regions[PrimaryChannel.NAME][PrimaryChannel.NAME]) self.export_classlabels() self.update_status({'text': 'export events...', 'max': 1, 'progress': 1}) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images') and \ self.settings.get('Processing', 'eventselection'): self.export_gallery_images() try: intval = stopwatch.stop()/n_images*1000 except ZeroDivisionError: pass else: self.logger.info(" - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() self.clear() return n_images @property def hdf5_filename(self): return self.timeholder.hdf5_filename def touch_finished(self, times=None): """Writes an empty file to mark this position as finished""" fname = join(self._finished_dir, '%s__finished.txt' % self.position) with open(fname, "w") as f: os.utime(fname, times) def clear(self): # closes if self.timeholder is not None: self.timeholder.close_all() # close and remove handlers from logging object self.close() def _analyze(self, cellanalyzer): super(PositionAnalyzer, self)._analyze() n_images = 0 stopwatch = StopWatch(start=True) crd = Coordinate(self.plate_id, self.position, self._frames, list(set(self.ch_mapping.values()))) minimal_effort = self.settings.get('Output', 'minimal_effort') and self.settings.get('Output', 'hdf5_reuse') for frame, channels in self._imagecontainer( \ crd, interrupt_channel=True, interrupt_zslice=True): if self.is_aborted(): self.clear() return 0 else: txt = 'T %d (%d/%d)' %(frame, self._frames.index(frame)+1, len(self._frames)) self.update_status({'progress': self._frames.index(frame)+1, 'text': txt, 'interval': stopwatch.interim()}) stopwatch.reset(start=True) cellanalyzer.initTimepoint(frame) self.register_channels(cellanalyzer, channels) cellanalyzer.process() self.logger.info(" - Frame %d, cellanalyzer.process (ms): %3d" \ %(frame, stopwatch.interval()*1000)) n_images += 1 images = [] if self.settings('Processing', 'tracking'): region = self.settings('Tracking', 'region') samples = self.timeholder[frame][PrimaryChannel.NAME].get_region(region) self._tracker.track_next_frame(frame, samples) if self.settings('Tracking', 'tracking_visualization'): size = cellanalyzer.getImageSize(PrimaryChannel.NAME) nframes = self.settings('Tracking', 'tracking_visualize_track_length') radius = self.settings('Tracking', 'tracking_centroid_radius') img_conn, img_split = self._tracker.render_tracks( frame, size, nframes, radius) images += [(img_conn, '#FFFF00', 1.0), (img_split, '#00FFFF', 1.0)] self.logger.info(" - Frame %d, Tracking (ms): %3d" \ %(frame, stopwatch.interval()*1000)) # can't cluster on a per frame basis if self.settings("EventSelection", "supervised_event_selection"): for clf in self.classifiers.itervalues(): cellanalyzer.classify_objects(clf) self.logger.info(" - Frame %d, Classification (ms): %3d" \ % (frame, stopwatch.interval()*1000)) self.settings.set_section('General') # want emit all images at once if not minimal_effort: imgs = {} imgs.update(self.render_classification_images(cellanalyzer, images, frame)) imgs.update(self.render_contour_images(cellanalyzer, images, frame)) msg = 'PL %s - P %s - T %05d' %(self.plate_id, self.position, frame) self.set_image(imgs, msg, 50) if self.settings('Output', 'rendering_channel_gallery'): self.render_channel_gallery(cellanalyzer, frame) if self.settings('Output', 'rendering_labels_discwrite'): cellanalyzer.exportLabelImages(self._labels_dir) cellanalyzer.purge(features=self.export_features) self.logger.info(" - Frame %d, rest (ms): %3d" \ %(frame, stopwatch.interval()*1000)) self.logger.info(" - Frame %d, duration (ms): %3d" \ %(frame, stopwatch.interim()*1000)) return n_images def render_channel_gallery(self, cellanalyzer, frame): for channel in cellanalyzer.virtual_channels.itervalues(): chgal = ChannelGallery(channel, frame, self._channel_gallery_dir) chgal.make_gallery() def render_contour_images(self, ca, images, frame): images_ = dict() for region, render_par in self.settings.get2('rendering').iteritems(): out_dir = join(self._images_dir, region) write = self.settings('Output', 'rendering_contours_discwrite') if region not in self.CHANNELS.keys(): img, _ = ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=write, images=images) images_[region] = img # gallery images are treated differenty else: ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=True) return images_ def render_classification_images(self, cellanalyzer, images, frame): images_ = dict() for region, render_par in self.settings.get2('rendering_class').iteritems(): out_images = join(self._images_dir, region) write = self.settings('Output', 'rendering_class_discwrite') image, _ = cellanalyzer.render(out_images, dctRenderInfo=render_par, writeToDisc=write, images=images) images_[region] = image return images_
class PositionAnalyzer(PositionCore): def __init__(self, *args, **kw): super(PositionAnalyzer, self).__init__(*args, **kw) if not self.has_timelapse: self.settings.set('Processing', 'tracking', False) self._makedirs() self.add_file_handler(join(self._log_dir, "%s.log" % self.position), self._lvl.DEBUG) def _makedirs(self): assert isinstance(self.position, basestring) assert isinstance(self._out_dir, basestring) self._analyzed_dir = join(self._out_dir, "analyzed") if self.has_timelapse: self._position_dir = join(self._analyzed_dir, self.position) else: self._position_dir = self._analyzed_dir odirs = (self._analyzed_dir, join(self._out_dir, "log"), join(self._out_dir, "log", "_finished"), join(self._out_dir, "hdf5"), join(self._out_dir, "plots"), join(self._position_dir, "statistics"), join(self._position_dir, "gallery"), join(self._position_dir, "channel_gallery"), join(self._position_dir, "images"), join(self._position_dir, "images", "_labels")) for odir in odirs: try: makedirs(odir) except os.error: # no permissions self.logger.error("mkdir %s: failed" % odir) else: self.logger.info("mkdir %s: ok" % odir) setattr(self, "_%s_dir" % basename(odir.lower()).strip("_"), odir) def setup_classifiers(self): sttg = self.settings # processing channel, color channel for p_channel, c_channel in self.ch_mapping.iteritems(): self.settings.set_section('Processing') if sttg.get2(self._resolve_name(p_channel, 'classification')): sttg.set_section('Classification') clf = CommonClassPredictor( clf_dir=sttg.get2( self._resolve_name(p_channel, 'classification_envpath')), name=p_channel, channels=self._channel_regions(p_channel), color_channel=c_channel) clf.importFromArff() clf.loadClassifier() self.classifiers[p_channel] = clf def _convert_tracking_duration(self, option_name): """Converts a tracking duration according to the unit and the mean time-lapse of the current position. Returns number of frames. """ value = self.settings.get(SECTION_NAME_TRACKING, option_name) unit = self.settings.get(SECTION_NAME_TRACKING, 'tracking_duration_unit') # get mean and stddev for the current position info = self.meta_data.get_timestamp_info(self.position) if unit == TRACKING_DURATION_UNIT_FRAMES or info is None: result = value elif unit == TRACKING_DURATION_UNIT_MINUTES: result = (value * 60.) / info[0] elif unit == TRACKING_DURATION_UNIT_SECONDS: result = value / info[0] else: raise ValueError("Wrong unit '%s' specified." % unit) return int(round(result)) @property def _es_options(self): transitions = eval(self.settings.get2('tracking_labeltransitions')) if not isinstance(transitions[0], tuple): transitions = (transitions, ) evopts = { 'transitions': transitions, 'backward_labels': map(int, self.settings.get2('tracking_backwardlabels').split(',')), 'forward_labels': map(int, self.settings.get2('tracking_forwardlabels').split(',')), 'backward_check': self._convert_tracking_duration('tracking_backwardCheck'), 'forward_check': self._convert_tracking_duration('tracking_forwardCheck'), 'backward_range': self._convert_tracking_duration('tracking_backwardrange'), 'forward_range': self._convert_tracking_duration('tracking_forwardrange'), 'backward_range_min': self.settings.get2('tracking_backwardrange_min'), 'forward_range_min': self.settings.get2('tracking_forwardrange_min'), 'max_in_degree': self.settings.get2('tracking_maxindegree'), 'max_out_degree': self.settings.get2('tracking_maxoutdegree') } return evopts def define_exp_features(self): features = {} for name in self.processing_channels: region_features = {} for region in REGION_INFO.names[name.lower()]: # export all features extracted per regions if self.settings.get('Output', 'events_export_all_features') or \ self.settings.get('Output', 'export_track_data'): # None means all features region_features[region] = None # export selected features from settings else: region_features[region] = \ self.settings.get('General', '%s_featureextraction_exportfeaturenames' % name.lower()) features[name] = region_features return features def export_object_counts(self): fname = join(self._statistics_dir, 'P%s__object_counts.txt' % self.position) # at least the total count for primary is always exported ch_info = OrderedDict([('Primary', ('primary', [], []))]) for name, clf in self.classifiers.iteritems(): names = clf.class_names.values() colors = [clf.hexcolors[n] for n in names] ch_info[name] = (clf.regions, names, colors) self.timeholder.exportObjectCounts(fname, self.position, self.meta_data, ch_info) pplot_ymax = \ self.settings.get('Output', 'export_object_counts_ylim_max') # plot only for primary channel so far! self.timeholder.exportPopulationPlots(fname, self._plots_dir, self.position, self.meta_data, ch_info['Primary'], pplot_ymax) def export_object_details(self): fname = join(self._statistics_dir, 'P%s__object_details.txt' % self.position) self.timeholder.exportObjectDetails(fname, excel_style=False) fname = join(self._statistics_dir, 'P%s__object_details_excel.txt' % self.position) self.timeholder.exportObjectDetails(fname, excel_style=True) def export_image_names(self): self.timeholder.exportImageFileNames(self._statistics_dir, self.position, self._imagecontainer._importer, self.ch_mapping) def export_full_tracks(self): odir = join(self._statistics_dir, 'full') exporter = EventExporter(self.meta_data) exporter.full_tracks(self.timeholder, self._tes.visitor_data, self.position, odir) def export_graphviz(self, channel_name='Primary', region_name='primary'): filename = 'tracking_graph___P%s.dot' % self.position exporter = TrackExporter() exporter.graphviz_dot(join(self._statistics_dir, filename), self._tracker) sample_holders = OrderedDict() for frame in self.timeholder.keys(): channel = self.timeholder[frame][channel_name] sample_holders[frame] = channel.get_region(region_name) filename = join(self._statistics_dir, filename.replace('.dot', '_features.csv')) exporter.tracking_data(filename, sample_holders) def export_gallery_images(self): for ch_name in self.processing_channels: cutter_in = join(self._images_dir, ch_name) if isdir(cutter_in): cutter_out = join(self._gallery_dir, ch_name) self.logger.info("running Cutter for '%s'..." % ch_name) image_size = \ self.settings.get('Output', 'events_gallery_image_size') EventGallery(self._tes, cutter_in, self.position, cutter_out, self.meta_data, oneFilePerTrack=True, size=(image_size, image_size)) # FIXME: be careful here. normally only raw images are # used for the cutter and can be deleted # afterwards shutil.rmtree(cutter_in, ignore_errors=True) def export_tracks_hdf5(self): """Save tracking data to hdf file""" self.logger.debug("--- serializing tracking start") self.timeholder.serialize_tracking(self._tes.graph) self.logger.debug("--- serializing tracking ok") def export_events(self): """Export and save event selceciton data""" exporter = EventExporter(self.meta_data) # writes to the event folder odir = join(self._statistics_dir, "events") exporter.track_features(self.timeholder, self._tes.visitor_data, self.export_features, self.position, odir) self.logger.debug("--- visitor analysis ok") # writes event data to hdf5 self.timeholder.serialize_events(self._tes) self.logger.debug("--- serializing events ok") def __call__(self): # include hdf5 file name in hdf5_options # perhaps timeholder might be a good placke to read out the options # fils must not exist to proceed hdf5_fname = join(self._hdf5_dir, '%s.ch5' % self.position) self.timeholder = TimeHolder(self.position, self._all_channel_regions, hdf5_fname, self.meta_data, self.settings, self._frames, self.plate_id, **self._hdf_options) self.settings.set_section('Tracking') # setup tracker if self.settings.get('Processing', 'tracking'): region = self.settings.get('Tracking', 'tracking_regionname') tropts = (self.settings.get('Tracking', 'tracking_maxobjectdistance'), self.settings.get('Tracking', 'tracking_maxsplitobjects'), self.settings.get('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) self._tes = EventSelection(self._tracker.graph, **self._es_options) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings.get( 'Processing', 'objectdetection')) self.setup_classifiers() self.export_features = self.define_exp_features() n_images = self._analyze(ca) if n_images > 0: # invoke event selection if self.settings.get('Processing', 'tracking_synchronize_trajectories') and \ self.settings.get('Processing', 'tracking'): self.logger.debug("--- visitor start") self._tes.find_events() self.logger.debug("--- visitor ok") if self.is_aborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings.get('Output', 'export_object_counts'): self.export_object_counts() if self.settings.get('Output', 'export_object_details'): self.export_object_details() if self.settings.get('Output', 'export_file_names'): self.export_image_names() if self.settings.get('Processing', 'tracking'): self.export_tracks_hdf5() self.update_status({'text': 'export events...'}) if self.settings.get('Processing', 'tracking_synchronize_trajectories'): self.export_events() if self.settings.get('Output', 'export_track_data'): self.export_full_tracks() if self.settings.get('Output', 'export_tracking_as_dot'): self.export_graphviz() self.update_status({ 'text': 'export events...', 'max': 1, 'progress': 1 }) # remove all features from all channels to free memory # for the generation of gallery images self.timeholder.purge_features() if self.settings.get('Output', 'events_export_gallery_images'): self.export_gallery_images() try: intval = stopwatch.stop() / n_images * 1000 except ZeroDivisionError: pass else: self.logger.info( " - %d image sets analyzed, %3d ms per image set" % (n_images, intval)) self.touch_finished() # self.clear() return n_images @property def hdf5_filename(self): return self.timeholder.hdf5_filename def touch_finished(self, times=None): """Writes an empty file to mark this position as finished""" fname = join(self._finished_dir, '%s__finished.txt' % self.position) with open(fname, "w") as f: os.utime(fname, times) def clear(self): # closes hdf5 self.timeholder.close_all() def _analyze(self, cellanalyzer): super(PositionAnalyzer, self)._analyze() n_images = 0 stopwatch = StopWatch(start=True) crd = Coordinate(self.plate_id, self.position, self._frames, list(set(self.ch_mapping.values()))) for frame, channels in self._imagecontainer( \ crd, interrupt_channel=True, interrupt_zslice=True): if self.is_aborted(): self.clear() return 0 else: txt = 'T %d (%d/%d)' % (frame, self._frames.index(frame) + 1, len(self._frames)) self.update_status({ 'progress': self._frames.index(frame) + 1, 'text': txt, 'interval': stopwatch.interim() }) stopwatch.reset(start=True) cellanalyzer.initTimepoint(frame) self.register_channels(cellanalyzer, channels) cellanalyzer.process() n_images += 1 images = [] if self.settings.get('Processing', 'tracking'): region = self.settings.get('Tracking', 'tracking_regionname') samples = self.timeholder[frame][ PrimaryChannel.NAME].get_region(region) self._tracker.track_next_frame(frame, samples) if self.settings.get('Tracking', 'tracking_visualization'): size = cellanalyzer.getImageSize(PrimaryChannel.NAME) nframes = self.settings.get( 'Tracking', 'tracking_visualize_track_length') radius = self.settings.get('Tracking', 'tracking_centroid_radius') img_conn, img_split = self._tracker.render_tracks( frame, size, nframes, radius) images += [(img_conn, '#FFFF00', 1.0), (img_split, '#00FFFF', 1.0)] for clf in self.classifiers.itervalues(): cellanalyzer.classify_objects(clf) ############################################################## # FIXME - part for browser if not self._myhack is None: self.render_browser(cellanalyzer) ############################################################## self.settings.set_section('General') self.render_classification_images(cellanalyzer, images, frame) self.render_contour_images(cellanalyzer, images, frame) if self.settings.get('Output', 'rendering_channel_gallery'): self.render_channel_gallery(cellanalyzer, frame) if self.settings.get('Output', 'rendering_labels_discwrite'): cellanalyzer.exportLabelImages(self._labels_dir) self.logger.info(" - Frame %d, duration (ms): %3d" \ %(frame, stopwatch.interim()*1000)) cellanalyzer.purge(features=self.export_features) return n_images def render_channel_gallery(self, cellanalyzer, frame): for channel in cellanalyzer.virtual_channels.itervalues(): chgal = ChannelGallery(channel, frame, self._channel_gallery_dir) chgal.make_gallery() def render_contour_images(self, ca, images, frame): for region, render_par in self.settings.get2('rendering').iteritems(): out_dir = join(self._images_dir, region) write = self.settings.get('Output', 'rendering_contours_discwrite') if region not in self.CHANNELS.keys(): img, fname = ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=write, images=images) msg = 'PL %s - P %s - T %05d' % (self.plate_id, self.position, frame) self.set_image(img, msg, fname, region, 50) # gallery images are treated differenty else: ca.render(out_dir, dctRenderInfo=render_par, writeToDisc=True) def render_classification_images(self, cellanalyzer, images, frame): for region, render_par in self.settings.get2( 'rendering_class').iteritems(): out_images = join(self._images_dir, region) write = self.settings.get('Output', 'rendering_class_discwrite') img_rgb, fname = cellanalyzer.render(out_images, dctRenderInfo=render_par, writeToDisc=write, images=images) msg = 'PL %s - P %s - T %05d' % (self.plate_id, self.position, frame) self.set_image(img_rgb, msg, fname, region, 50) def render_browser(self, cellanalyzer): d = {} for name in cellanalyzer.get_channel_names(): channel = cellanalyzer.get_channel(name) d[channel.strChannelId] = channel.meta_image.image self._myhack.show_image(d) channel_name, region_name = self._myhack._object_region channel = cellanalyzer.get_channel(channel_name) if channel.has_region(region_name): region = channel.get_region(region_name) coords = {} for obj_id, obj in region.iteritems(): coords[obj_id] = obj.crack_contour self._myhack.set_coords(coords)
def __call__(self): thread = QThread.currentThread() well, site = self._posinfo() self.timeholder = TimeHolder(self.position, self._all_channel_regions, self.datafile, self.meta_data, self.settings, self._frames, self.plate_id, well, site, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() self._analyze(ca) # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if evchannel != PrimaryChannel.NAME or region != self.settings( "Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.info("Event detection") self._tes.find_events() if self.isAborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Processing', 'tracking'): self.statusUpdate(text="Saving Tracking Data to cellh5...") self.save_tracks() if self.settings('Output', 'hdf5_include_events') and \ self.settings('Processing', "eventselection"): self.statusUpdate(text="Saving Event Data to cellh5...") self.save_events() self.save_classification() self.timeholder.purge() try: n = len(self._frames) intval = stopwatch.stop() / n * 1000 except ZeroDivisionError: pass else: self.logger.info("%d images analyzed, %3d ms per image set" % (n, intval)) self.clear() if isfile(self.datafile): with Ch5File(self.datafile, mode="r+") as ch5: ch5.savePlateLayout(self.layout, self.plate_id)
class PositionAnalyzer(PositionCore): def __init__(self, *args, **kw): super(PositionAnalyzer, self).__init__(*args, **kw) if not self.has_timelapse: self.settings.set('Processing', 'tracking', False) if self._writelogs: logfile = join(dirname(dirname(self.datafile)), "log", "%s.log" % self.position) self.add_file_handler(logfile, self.Levels.DEBUG) self.logger.setLevel(self.Levels.DEBUG) def setup_classifiers(self): sttg = self.settings # processing channel, color channel for p_channel, c_channel in self.ch_mapping.iteritems(): self.settings.set_section('Processing') if sttg.get2(self._resolve_name(p_channel, 'classification')): chreg = self._channel_regions(p_channel) sttg.set_section('Classification') cpath = sttg.get2( self._resolve_name(p_channel, 'classification_envpath')) cpath = join(cpath, basename(cpath) + ".hdf") svc = SupportVectorClassifier(cpath, load=True, channels=chreg, color_channel=c_channel) svc.close() self.classifiers[p_channel] = svc @property def _transitions(self): try: transitions = np.array( eval(self.settings.get('EventSelection', 'labeltransitions'))) transitions.reshape((-1, 2)) except Exception as e: raise RuntimeError(("Make sure that transitions are of the form " "'int, int' or '(int, int), (int, int)' i.e " "2-int-tuple or a list of 2-int-tuples")) return transitions def setup_eventselection(self, graph): """Setup the method for event selection.""" opts = { 'transitions': self._transitions, 'backward_range': self._convert_tracking_duration('backwardrange'), 'forward_range': self._convert_tracking_duration('forwardrange'), 'max_in_degree': self.settings.get('EventSelection', 'maxindegree'), 'max_out_degree': self.settings.get('EventSelection', 'maxoutdegree') } opts.update({ 'backward_labels': [ int(i) for i in self.settings.get('EventSelection', 'backwardlabels').split(',') ], 'forward_labels': [ int(i) for i in self.settings.get('EventSelection', 'forwardlabels').split(',') ], 'backward_range_min': self.settings.get('EventSelection', 'backwardrange_min'), 'forward_range_min': self.settings.get('EventSelection', 'forwardrange_min'), 'backward_check': self._convert_tracking_duration('backwardCheck'), 'forward_check': self._convert_tracking_duration('forwardCheck') }) es = EventSelection(graph, **opts) return es def _convert_tracking_duration(self, option_name): """Converts a tracking duration according to the unit and the mean time-lapse of the current position. Returns number of frames. """ value = self.settings.get('EventSelection', option_name) unit = self.settings.get('EventSelection', 'duration_unit') # get mean and stddev for the current position info = self.meta_data.get_timestamp_info(self.position) if unit == TimeConverter.FRAMES or info is None: result = value elif unit == TimeConverter.MINUTES: result = (value * 60.) / info[0] elif unit == TimeConverter.SECONDS: result = value / info[0] else: raise ValueError("Wrong unit '%s' specified." % unit) return int(round(result)) def define_exp_features(self): features = {} for name in self.processing_channels: region_features = {} for region in MetaPluginManager().region_info.names[name.lower()]: if name is self.MERGED_CHANNEL: continue region_features[region] = \ self.settings.get('General', '%s_featureextraction_exportfeaturenames' % name.lower()) features[name] = region_features # special case for merged channel if name is self.MERGED_CHANNEL: mftrs = list() for channel, region in self._channel_regions(name).iteritems(): if features[channel][region] is None: mftrs = None else: for feature in features[channel][region]: mftrs.append("_".join((channel, region, feature))) region_features[ self._all_channel_regions[name].values()] = mftrs features[name] = region_features return features def save_tracks(self): """Save tracking data to hdf file""" self.logger.info("Save tracking data") self.timeholder.serialize_tracking(self._tracker.graph) def save_events(self): self.logger.info("Save Event data") self.timeholder.serialize_events(self._tes) def save_classification(self): """Save classlabels of each object to the hdf file.""" # function works for supervised and unuspervised case for channels in self.timeholder.itervalues(): for chname, classifier in self.classifiers.iteritems(): holder = channels[chname].get_region(classifier.regions) # if classifier.feature_names is None: # # special for unsupervised case # classifier.feature_names = holder.feature_names self.timeholder.save_classlabels(channels[chname], holder, classifier) def __call__(self): thread = QThread.currentThread() well, site = self._posinfo() self.timeholder = TimeHolder(self.position, self._all_channel_regions, self.datafile, self.meta_data, self.settings, self._frames, self.plate_id, well, site, **self._hdf_options) self.settings.set_section('Tracking') self.setup_classifiers() # setup tracker if self.settings('Processing', 'tracking'): tropts = (self.settings('Tracking', 'tracking_maxobjectdistance'), self.settings('Tracking', 'tracking_maxsplitobjects'), self.settings('Tracking', 'tracking_maxtrackinggap')) self._tracker = Tracker(*tropts) stopwatch = StopWatch(start=True) ca = CellAnalyzer(timeholder=self.timeholder, position=self.position, create_images=True, binning_factor=1, detect_objects=self.settings('Processing', 'objectdetection')) self.export_features = self.define_exp_features() self._analyze(ca) # invoke event selection if self.settings('Processing', 'eventselection') and \ self.settings('Processing', 'tracking'): evchannel = self.settings('EventSelection', 'eventchannel') region = self.classifiers[evchannel].regions if evchannel != PrimaryChannel.NAME or region != self.settings( "Tracking", "region"): graph = self._tracker.clone_graph(self.timeholder, evchannel, region) else: graph = self._tracker.graph self._tes = self.setup_eventselection(graph) self.logger.info("Event detection") self._tes.find_events() if self.isAborted(): return 0 # number of processed images # save all the data of the position, no aborts from here on # want all processed data saved if self.settings('Processing', 'tracking'): self.statusUpdate(text="Saving Tracking Data to cellh5...") self.save_tracks() if self.settings('Output', 'hdf5_include_events') and \ self.settings('Processing', "eventselection"): self.statusUpdate(text="Saving Event Data to cellh5...") self.save_events() self.save_classification() self.timeholder.purge() try: n = len(self._frames) intval = stopwatch.stop() / n * 1000 except ZeroDivisionError: pass else: self.logger.info("%d images analyzed, %3d ms per image set" % (n, intval)) self.clear() if isfile(self.datafile): with Ch5File(self.datafile, mode="r+") as ch5: ch5.savePlateLayout(self.layout, self.plate_id) def clear(self): if self.timeholder is not None: self.timeholder.close_all() # close and remove handlers from logging object self.close() def _analyze(self, cellanalyzer): thread = QThread.currentThread() stopwatch = StopWatch(start=True) crd = Coordinate(self.plate_id, self.position, self._frames, list(set(self.ch_mapping.values()))) for frame, channels in self._imagecontainer( \ crd, interrupt_channel=True, interrupt_zslice=True): self.interruptionPoint() txt = '%s, %s, T %d (%d/%d)' \ %(self.plate_id, self.position, frame, self._frames.index(frame)+1, len(self._frames)) self.statusUpdate(text=txt, interval=stopwatch.interim(), increment=True) stopwatch.reset(start=True) cellanalyzer.initTimepoint(frame) self.register_channels(cellanalyzer, channels) cellanalyzer.process() self.logger.debug(" - Frame %d, cellanalyzer.process (ms): %3d" \ %(frame, stopwatch.interval()*1000)) images = [] if self.settings('Processing', 'tracking'): apc = AppPreferences() region = self.settings('Tracking', 'region') samples = self.timeholder[frame][ PrimaryChannel.NAME].get_region(region) self._tracker.track_next_frame(frame, samples) if apc.display_tracks: size = cellanalyzer.getImageSize(PrimaryChannel.NAME) img_conn, img_split = self._tracker.render_tracks( frame, size, apc.track_length, apc.cradius) images += [(img_conn, '#FFFF00', 1.0), (img_split, '#00FFFF', 1.0)] self.logger.debug(" - Frame %d, Tracking (ms): %3d" \ %(frame, stopwatch.interval()*1000)) # can't cluster on a per frame basis if self.settings("EventSelection", "supervised_event_selection"): for channel, clf in self.classifiers.iteritems(): cellanalyzer.classify_objects(clf, channel) self.logger.debug(" - Frame %d, Classification (ms): %3d" \ % (frame, stopwatch.interval()*1000)) self.settings.set_section('General') # want emit all images at once imgs = {} imgs.update( self.render_classification_images(cellanalyzer, images, frame)) imgs.update(self.render_contour_images(cellanalyzer, images, frame)) msg = 'PL %s - P %s - T %05d' % (self.plate_id, self.position, frame) self.setImage(imgs, msg, 50) cellanalyzer.purge(features=self.export_features) self.logger.debug(" - Frame %d, duration (ms): %3d" \ %(frame, stopwatch.interim()*1000)) def render_contour_images(self, ca, images, frame): images_ = dict() for region, render_par in self.settings.get2('rendering').iteritems(): img = ca.render(dctRenderInfo=render_par, images=images) images_[region] = img return images_ def render_classification_images(self, cellanalyzer, images, frame): images_ = dict() for region, render_par in self.settings.get2( 'rendering_class').iteritems(): image = cellanalyzer.render(dctRenderInfo=render_par, images=images) images_[region] = image return images_