예제 #1
0
 def url_to_modpath(url):
     if not url.lower().startswith("file:"):
         schema, rest = HDF5FileList.split_url(url)
         return [schema] + rest[0:1] + [urllib.unquote(part) for part in rest[1:]]
     path = urllib.url2pathname(url[5:])
     parts = []
     while True:
         new_path, part = os.path.split(path)
         if len(new_path) == 0 or len(part) == 0:
             parts.insert(0, path)
             break
         parts.insert(0, part)
         path = new_path
     return parts
예제 #2
0
 def url_to_modpath(url):
     if not url.lower().startswith("file:"):
         schema, rest = HDF5FileList.split_url(url)
         return [schema] + rest[0:1] + [urllib.unquote(part) for part in rest[1:]]
     path = urllib.url2pathname(url[5:])
     parts = []
     while True:
         new_path, part = os.path.split(path)
         if len(new_path) == 0 or len(part) == 0:
             parts.insert(0, path)
             break
         parts.insert(0, part)
         path = new_path
     return parts
예제 #3
0
def run_pipeline_headless(options, args):
    '''Run a CellProfiler pipeline in headless mode'''

    if sys.platform == 'darwin':
        if options.start_awt:
            from javabridge import activate_awt
            activate_awt()

    if not options.first_image_set is None:
        if not options.first_image_set.isdigit():
            raise ValueError(
                "The --first-image-set option takes a numeric argument")
        else:
            image_set_start = int(options.first_image_set)
    else:
        image_set_start = None

    image_set_numbers = None
    if not options.last_image_set is None:
        if not options.last_image_set.isdigit():
            raise ValueError(
                "The --last-image-set option takes a numeric argument")
        else:
            image_set_end = int(options.last_image_set)
            if image_set_start is None:
                image_set_numbers = np.arange(1, image_set_end + 1)
            else:
                image_set_numbers = np.arange(image_set_start,
                                              image_set_end + 1)
    else:
        image_set_end = None

    if ((options.pipeline_filename is not None)
            and (not options.pipeline_filename.lower().startswith('http'))):
        options.pipeline_filename = os.path.expanduser(
            options.pipeline_filename)
    from cellprofiler.pipeline import Pipeline, EXIT_STATUS, M_PIPELINE
    import cellprofiler.measurement as cpmeas
    import cellprofiler.preferences as cpprefs
    pipeline = Pipeline()
    initial_measurements = None
    try:
        if h5py.is_hdf5(options.pipeline_filename):
            initial_measurements = cpmeas.load_measurements(
                options.pipeline_filename, image_numbers=image_set_numbers)
    except:
        logging.root.info("Failed to load measurements from pipeline")
    if initial_measurements is not None:
        pipeline_text = \
            initial_measurements.get_experiment_measurement(
                    M_PIPELINE)
        pipeline_text = pipeline_text.encode('us-ascii')
        pipeline.load(StringIO(pipeline_text))
        if not pipeline.in_batch_mode():
            #
            # Need file list in order to call prepare_run
            #
            from cellprofiler.utilities.hdf5_dict import HDF5FileList
            with h5py.File(options.pipeline_filename, "r") as src:
                if HDF5FileList.has_file_list(src):
                    HDF5FileList.copy(src,
                                      initial_measurements.hdf5_dict.hdf5_file)
    else:
        pipeline.load(options.pipeline_filename)
    if options.groups is not None:
        kvs = [x.split('=') for x in options.groups.split(',')]
        groups = dict(kvs)
    else:
        groups = None
    file_list = cpprefs.get_image_set_file()
    if file_list is not None:
        pipeline.read_file_list(file_list)
    #
    # Fixup CreateBatchFiles with any command-line input or output directories
    #
    if pipeline.in_batch_mode():
        create_batch_files = [
            m for m in pipeline.modules() if m.is_create_batch_module()
        ]
        if len(create_batch_files) > 0:
            create_batch_files = create_batch_files[0]
            if options.output_directory is not None:
                create_batch_files.custom_output_directory.value = \
                    options.output_directory
            if options.image_directory is not None:
                create_batch_files.default_image_directory.value = \
                    options.image_directory

    use_hdf5 = len(args) > 0 and not args[0].lower().endswith(".mat")
    measurements = pipeline.run(
        image_set_start=image_set_start,
        image_set_end=image_set_end,
        grouping=groups,
        measurements_filename=None if not use_hdf5 else args[0],
        initial_measurements=initial_measurements)
    if len(args) > 0 and not use_hdf5:
        pipeline.save_measurements(args[0], measurements)
    if options.done_file is not None:
        if (measurements is not None
                and measurements.has_feature(cpmeas.EXPERIMENT, EXIT_STATUS)):
            done_text = measurements.get_experiment_measurement(EXIT_STATUS)

            exit_code = (0 if done_text == "Complete" else -1)
        else:
            done_text = "Failure"

            exit_code = -1

        fd = open(options.done_file, "wt")
        fd.write("%s\n" % done_text)
        fd.close()
    if measurements is not None:
        measurements.close()

    return exit_code
예제 #4
0
def run_pipeline_headless(options, args):
    '''Run a CellProfiler pipeline in headless mode'''
    
    if sys.platform == 'darwin':
        if options.start_awt:
            import bioformats
            from cellprofiler.utilities.jutil import activate_awt
            activate_awt()
        
    if not options.first_image_set is None:
        if not options.first_image_set.isdigit():
            raise ValueError("The --first-image-set option takes a numeric argument")
        else:
            image_set_start = int(options.first_image_set)
    else:
        image_set_start = None
    
    image_set_numbers = None
    if not options.last_image_set is None:
        if not options.last_image_set.isdigit():
            raise ValueError("The --last-image-set option takes a numeric argument")
        else:
            image_set_end = int(options.last_image_set)
            if image_set_start is None:
                image_set_numbers = np.arange(1, image_set_end+1)
            else:
                image_set_numbers = np.arange(image_set_start, image_set_end+1)
    else:
        image_set_end = None
    
    if ((options.pipeline_filename is not None) and 
        (not options.pipeline_filename.lower().startswith('http'))):
        options.pipeline_filename = os.path.expanduser(options.pipeline_filename)
    from cellprofiler.pipeline import Pipeline, EXIT_STATUS, M_PIPELINE
    import cellprofiler.measurements as cpmeas
    pipeline = Pipeline()
    initial_measurements = None
    try:
        if h5py.is_hdf5(options.pipeline_filename):
            initial_measurements = cpmeas.load_measurements(
                options.pipeline_filename,
                image_numbers=image_set_numbers)
    except:
        logging.root.info("Failed to load measurements from pipeline")
    if initial_measurements is not None:
        pipeline_text = \
            initial_measurements.get_experiment_measurement(
                M_PIPELINE)
        pipeline_text = pipeline_text.encode('us-ascii')
        pipeline.load(StringIO(pipeline_text))
        if not pipeline.in_batch_mode():
            #
            # Need file list in order to call prepare_run
            #
            from cellprofiler.utilities.hdf5_dict import HDF5FileList
            with h5py.File(options.pipeline_filename, "r") as src:
                if HDF5FileList.has_file_list(src):
                    HDF5FileList.copy(
                        src, initial_measurements.hdf5_dict.hdf5_file)
    else:
        pipeline.load(options.pipeline_filename)
    if options.groups is not None:
        kvs = [x.split('=') for x in options.groups.split(',')]
        groups = dict(kvs)
    else:
        groups = None
    use_hdf5 = len(args) > 0 and not args[0].lower().endswith(".mat")
    measurements = pipeline.run(
        image_set_start=image_set_start, 
        image_set_end=image_set_end,
        grouping=groups,
        measurements_filename = None if not use_hdf5 else args[0],
        initial_measurements = initial_measurements)
    if len(args) > 0 and not use_hdf5:
        pipeline.save_measurements(args[0], measurements)
    if options.done_file is not None:
        if (measurements is not None and 
            measurements.has_feature(cpmeas.EXPERIMENT, EXIT_STATUS)):
            done_text = measurements.get_experiment_measurement(EXIT_STATUS)
        else:
            done_text = "Failure"
        fd = open(options.done_file, "wt")
        fd.write("%s\n"%done_text)
        fd.close()
    if measurements is not None:
        measurements.close()
예제 #5
0
def run_pipeline_headless(options, args):
    '''Run a CellProfiler pipeline in headless mode'''
    #
    # Start Ilastik's workers
    #
    try:
        from ilastik.core.jobMachine import GLOBAL_WM
        GLOBAL_WM.set_thread_count(1)
    except:
        logging.root.warn("Failed to stop Ilastik")
    
    if sys.platform == 'darwin':
        if options.start_awt:
            import bioformats
            from javabridge import activate_awt
            activate_awt()
        
    if not options.first_image_set is None:
        if not options.first_image_set.isdigit():
            raise ValueError("The --first-image-set option takes a numeric argument")
        else:
            image_set_start = int(options.first_image_set)
    else:
        image_set_start = None
    
    image_set_numbers = None
    if not options.last_image_set is None:
        if not options.last_image_set.isdigit():
            raise ValueError("The --last-image-set option takes a numeric argument")
        else:
            image_set_end = int(options.last_image_set)
            if image_set_start is None:
                image_set_numbers = np.arange(1, image_set_end+1)
            else:
                image_set_numbers = np.arange(image_set_start, image_set_end+1)
    else:
        image_set_end = None
    
    if ((options.pipeline_filename is not None) and 
        (not options.pipeline_filename.lower().startswith('http'))):
        options.pipeline_filename = os.path.expanduser(options.pipeline_filename)
    from cellprofiler.pipeline import Pipeline, EXIT_STATUS, M_PIPELINE
    import cellprofiler.measurements as cpmeas
    import cellprofiler.preferences as cpprefs
    pipeline = Pipeline()
    initial_measurements = None
    try:
        if h5py.is_hdf5(options.pipeline_filename):
            initial_measurements = cpmeas.load_measurements(
                options.pipeline_filename,
                image_numbers=image_set_numbers)
    except:
        logging.root.info("Failed to load measurements from pipeline")
    if initial_measurements is not None:
        pipeline_text = \
            initial_measurements.get_experiment_measurement(
                M_PIPELINE)
        pipeline_text = pipeline_text.encode('us-ascii')
        pipeline.load(StringIO(pipeline_text))
        if not pipeline.in_batch_mode():
            #
            # Need file list in order to call prepare_run
            #
            from cellprofiler.utilities.hdf5_dict import HDF5FileList
            with h5py.File(options.pipeline_filename, "r") as src:
                if HDF5FileList.has_file_list(src):
                    HDF5FileList.copy(
                        src, initial_measurements.hdf5_dict.hdf5_file)
    else:
        pipeline.load(options.pipeline_filename)
    if options.groups is not None:
        kvs = [x.split('=') for x in options.groups.split(',')]
        groups = dict(kvs)
    else:
        groups = None
    file_list = cpprefs.get_image_set_file()
    if file_list is not None:
        pipeline.read_file_list(file_list)
    #
    # Fixup CreateBatchFiles with any command-line input or output directories
    #
    if pipeline.in_batch_mode():
        create_batch_files = [
            m for m in pipeline.modules()
            if m.is_create_batch_module()]
        if len(create_batch_files) > 0:
            create_batch_files = create_batch_files[0]
            if options.output_directory is not None:
                create_batch_files.custom_output_directory.value = \
                    options.output_directory
            if options.image_directory is not None:
                create_batch_files.default_image_directory.value = \
                    options.image_directory
        
    use_hdf5 = len(args) > 0 and not args[0].lower().endswith(".mat")
    measurements = pipeline.run(
        image_set_start=image_set_start, 
        image_set_end=image_set_end,
        grouping=groups,
        measurements_filename = None if not use_hdf5 else args[0],
        initial_measurements = initial_measurements)
    if len(args) > 0 and not use_hdf5:
        pipeline.save_measurements(args[0], measurements)
    if options.done_file is not None:
        if (measurements is not None and 
            measurements.has_feature(cpmeas.EXPERIMENT, EXIT_STATUS)):
            done_text = measurements.get_experiment_measurement(EXIT_STATUS)
        else:
            done_text = "Failure"
        fd = open(options.done_file, "wt")
        fd.write("%s\n"%done_text)
        fd.close()
    if measurements is not None:
        measurements.close()
예제 #6
0
def run_pipeline_headless(options, args):
    '''Run a CellProfiler pipeline in headless mode'''

    if not options.first_image_set is None:
        if not options.first_image_set.isdigit():
            raise ValueError(
                "The --first-image-set option takes a numeric argument")
        else:
            image_set_start = int(options.first_image_set)
    else:
        image_set_start = None

    image_set_numbers = None
    if not options.last_image_set is None:
        if not options.last_image_set.isdigit():
            raise ValueError(
                "The --last-image-set option takes a numeric argument")
        else:
            image_set_end = int(options.last_image_set)
            if image_set_start is None:
                image_set_numbers = np.arange(1, image_set_end + 1)
            else:
                image_set_numbers = np.arange(image_set_start,
                                              image_set_end + 1)
    else:
        image_set_end = None

    if ((options.pipeline_filename is not None)
            and (not options.pipeline_filename.lower().startswith('http'))):
        options.pipeline_filename = os.path.expanduser(
            options.pipeline_filename)
    from cellprofiler.pipeline import Pipeline, EXIT_STATUS, M_PIPELINE
    import cellprofiler.measurements as cpmeas
    pipeline = Pipeline()
    initial_measurements = None
    try:
        if h5py.is_hdf5(options.pipeline_filename):
            initial_measurements = cpmeas.load_measurements(
                options.pipeline_filename, image_numbers=image_set_numbers)
    except:
        logging.root.info("Failed to load measurements from pipeline")
    if initial_measurements is not None:
        pipeline_text = \
            initial_measurements.get_experiment_measurement(
                M_PIPELINE)
        pipeline_text = pipeline_text.encode('us-ascii')
        pipeline.load(StringIO(pipeline_text))
        if not pipeline.in_batch_mode():
            #
            # Need file list in order to call prepare_run
            #
            from cellprofiler.utilities.hdf5_dict import HDF5FileList
            with h5py.File(options.pipeline_filename, "r") as src:
                if HDF5FileList.has_file_list(src):
                    HDF5FileList.copy(src,
                                      initial_measurements.hdf5_dict.hdf5_file)
    else:
        pipeline.load(options.pipeline_filename)
    if options.groups is not None:
        kvs = [x.split('=') for x in options.groups.split(',')]
        groups = dict(kvs)
    else:
        groups = None
    use_hdf5 = len(args) > 0 and not args[0].lower().endswith(".mat")
    measurements = pipeline.run(
        image_set_start=image_set_start,
        image_set_end=image_set_end,
        grouping=groups,
        measurements_filename=None if not use_hdf5 else args[0],
        initial_measurements=initial_measurements)
    if len(args) > 0 and not use_hdf5:
        pipeline.save_measurements(args[0], measurements)
    if options.done_file is not None:
        if (measurements is not None
                and measurements.has_feature(cpmeas.EXPERIMENT, EXIT_STATUS)):
            done_text = measurements.get_experiment_measurement(EXIT_STATUS)
        else:
            done_text = "Failure"
        fd = open(options.done_file, "wt")
        fd.write("%s\n" % done_text)
        fd.close()
    if measurements is not None:
        measurements.close()