def test_rotational_invariance(self): j=4 k=1 avars = Andoyer.from_Simulation(self.sim, j, k, i1=1, i2=2) rot = np.pi/3. ps = self.sim.particles simrot = rebound.Simulation() simrot.G = self.sim.G simrot.add(m=ps[0].m) for p in ps[1:]: simrot.add(m=p.m, a=p.a, e=p.e, inc=p.inc, Omega=p.Omega+rot, pomega=p.pomega+rot, l=p.l+rot) simrot.move_to_com() avarsrot = Andoyer.from_Simulation(simrot, j, k, i1=1, i2=2) self.assertAlmostEqual(avars.X, avarsrot.X, delta=self.delta) self.assertAlmostEqual(avars.Y, avarsrot.Y, delta=self.delta) self.assertAlmostEqual(avars.Zcom, avarsrot.Zcom, delta=self.delta) self.assertAlmostEqual(np.cos(avars.phiZcom+rot), np.cos(avarsrot.phiZcom), delta=self.delta) self.assertAlmostEqual(avars.B, avarsrot.B, delta=self.delta) self.assertAlmostEqual(avars.dKprime, avarsrot.dKprime, delta=self.delta) self.assertAlmostEqual(np.cos(avars.theta+k*rot), np.cos(avarsrot.theta), delta=self.delta) p = avars.params fac = (p['m1']*p['sLambda10'] + p['m2']*p['sLambda20'])/p['K0'] self.assertAlmostEqual(np.cos(avars.theta1+fac*rot), np.cos(avarsrot.theta1), delta=self.delta)
def get_k(row): sim = rebound.SimulationArchive(sim_names + "_sa_%d.bin" % (row[0]))[0] # print(sim) p2 = sim.particles[2] row['h'] = p2.e * np.sin(p2.pomega) row['k'] = p2.e * np.cos(p2.pomega) avars = Andoyer.from_Simulation(sim, a10=sim.particles[1].a, j=5, k=1, i1=1, i2=2, average=False) row['Z12'] = avars.Z row['Zcom12'] = avars.Zcom avars = Andoyer.from_Simulation(sim, a10=sim.particles[1].a, j=4, k=1, i1=2, i2=3, average=False) row['Z23'] = avars.Z row['Zcom23'] = avars.Zcom row['e1'] = sim.particles[1].e row['e2'] = sim.particles[2].e row['e3'] = sim.particles[3].e row['m1'] = sim.particles[1].m row['m2'] = sim.particles[2].m row['m3'] = sim.particles[3].m return row
def test_from_elements(self): j = 5 k = 2 Zstar = 0.1 libfac = 0.5 a10 = 3. a1 = 3.1 G = 2. m1 = 1.e-7 m2 = 1.e-4 ecom = 0.05 phiecom = 0.7 avars = Andoyer.from_elements(j, k, Zstar, libfac, a10, a1, G, m1=m1, m2=m2, Zcom=ecom, phiZcom=phiecom) self.assertAlmostEqual(avars.Zstar, Zstar, delta=1.e-12) self.assertAlmostEqual(avars.Zcom, ecom, delta=1.e-15) self.assertAlmostEqual(avars.phiZcom, phiecom, delta=1.e-15) sim = avars.to_Simulation() self.assertAlmostEqual( sim.particles[1].a, a1, delta=3 * ((a1 - a10) / a10)** 2) # should match to O(da/a)^2, atrue=1, a10=a10
def test_ecom(self): j = 57 k = 2 sim = rebound.Simulation() sim.G = 4 * np.pi**2 sim.add(m=1.) sim.add(m=1.e-6, e=0.01, P=1., pomega=-np.pi / 6, f=np.pi, jacobi_masses=True) sim.add(m=3.e-6, e=0.03, pomega=np.pi / 3, P=float(j) / (j - k), jacobi_masses=True) #float(j)/(j-k), theta=3.14) sim.move_to_com() ps = sim.particles e1x = ps[1].e * np.cos(ps[1].pomega) e1y = ps[1].e * np.sin(ps[1].pomega) e2x = ps[2].e * np.cos(ps[2].pomega) e2y = ps[2].e * np.sin(ps[2].pomega) avars = Andoyer.from_Simulation(sim, j, k, a10=1.02, average=True) m1 = avars.params['m1'] m2 = avars.params['m2'] ecomx = (m1 * e1x + m2 * e2x) / (m1 + m2) ecomy = (m1 * e1y + m2 * e2y) / (m1 + m2) ecomsim = np.sqrt(ecomx**2 + ecomy**2) self.assertAlmostEqual(avars.Zcom, ecomsim, delta=1.e-3) phiecomsim = np.arctan2(ecomy, ecomx) self.assertAlmostEqual(avars.phiZcom, phiecomsim, delta=1.e-3)
def test_ZsGammaConversion(self): avars = Andoyer.from_Simulation(self.sim, 4, 1) Z = avars.Z phiZ = avars.psi1 Zcom = avars.Zcom phiZcom = avars.phiZcom sGamma1, gamma1, sGamma2, gamma2 = avars.Zs_to_sGammas(Z, phiZ, Zcom, phiZcom) nZ, nphiZ, nZcom, nphiZcom = avars.sGammas_to_Zs(sGamma1, gamma1, sGamma2, gamma2) self.assertAlmostEqual(nZ,Z, delta=1.e-15) self.assertAlmostEqual(np.mod(nphiZ, 2*np.pi), np.mod(phiZ, 2*np.pi), delta=1.e-15) self.assertAlmostEqual(nZcom, Zcom, delta=1.e-15) self.assertAlmostEqual(np.mod(nphiZcom, 2*np.pi), np.mod(phiZcom, 2*np.pi), delta=1.e-15) # should also be equivalent for 2 massive particles to rotation pvars = Poincare.from_Simulation(self.sim) ps = pvars.particles p = avars.params f, g = p['f'], p['g'] ff = f*np.sqrt(p['eta']/p['m1']/p['sLambda10']) gg = g*np.sqrt(p['eta']/p['m2']/p['sLambda20']) norm = np.sqrt(ff*ff + gg*gg) psirotmatrix = np.array([[ff,gg],[-gg,ff]]) / norm invpsirotmatrix = np.array([[ff,-gg],[gg,ff]]) / norm Psi1,psi1,Psi2,psi2 = self.rotate_actions(ps[1].Gamma/p['eta'],ps[1].gamma,ps[2].Gamma/p['eta'],ps[2].gamma, psirotmatrix) self.assertAlmostEqual(Psi1, avars.Psi1, delta=1.e-15) self.assertAlmostEqual(np.mod(psi1, 2*np.pi), np.mod(avars.psi1, 2*np.pi), delta=1.e-15) self.assertAlmostEqual(Psi2, avars.Psi2, delta=1.e-15) self.assertAlmostEqual(np.mod(psi2, 2*np.pi), np.mod(avars.psi2, 2*np.pi), delta=1.e-15)
def test_dP(self): j=5 k=2 sim = rebound.Simulation() sim.add(m=1.) sim.add(m=1.e-6, P=1.) sim.add(m=3.e-6, P=1.68) sim.move_to_com() avars = Andoyer.from_Simulation(sim,j,k, a10=0.32, average=False) # real a0 ~0.29, 10% err self.assertAlmostEqual(1.68-float(j)/(j-k), avars.dP, delta=0.01) # err is da^2 or smaller, so 1%
def test_masses(self): # turn off averaging for all transformation tests since averaging # is not symmetric back and forth (there's diff of O(s^2)) masses = [1., 1.e-5, 1.e-7, 1.e-3] pairs = [[1,2], [2,3], [1,3]] for i1, i2 in pairs: m = [masses[0], masses[i1], masses[i2]] avars = Andoyer.from_Simulation(self.sim, 4, 1, average=False, i1=i1, i2=i2) sim = avars.to_Simulation(masses=m, average=False) self.compare_particles(self.sim, sim, i1, 1, self.delta) self.compare_particles(self.sim, sim, i2, 2, self.delta)
def test_scale_invariance(self): avars = Andoyer.from_Simulation(self.sim, 4, 1, i1=1, i2=2) mfac = 3. dfac = 0.05 vfac = np.sqrt(mfac/dfac) for p in self.sim.particles: p.m *= mfac p.vx *= vfac p.vy *= vfac p.vz *= vfac p.x *= dfac p.y *= dfac p.z *= dfac avarsscaled = Andoyer.from_Simulation(self.sim, 4, 1, i1=1, i2=2) self.assertAlmostEqual(avars.X, avarsscaled.X, delta=self.delta) self.assertAlmostEqual(avars.Y, avarsscaled.Y, delta=self.delta) self.assertAlmostEqual(avars.Zcom, avarsscaled.Zcom, delta=self.delta) self.assertAlmostEqual(np.cos(avars.phiZcom), np.cos(avarsscaled.phiZcom), delta=self.delta) self.assertAlmostEqual(avars.B, avarsscaled.B, delta=self.delta) self.assertAlmostEqual(avars.dKprime, avarsscaled.dKprime, delta=self.delta) self.assertAlmostEqual(np.cos(avars.theta), np.cos(avarsscaled.theta), delta=self.delta) self.assertAlmostEqual(np.cos(avars.theta1), np.cos(avarsscaled.theta1), delta=self.delta)
def test_H(self): j=3 k=1 a10 = 1.02 sim = rebound.Simulation() sim.G = 4*np.pi**2 sim.add(m=1.) sim.add(m=1.e-6, e=0.01, P=1., pomega=-np.pi/2, f=np.pi, jacobi_masses=True) sim.add(m=3.e-6, e=0.03, pomega=np.pi/2, P=float(j)/(j-k), jacobi_masses=True)#float(j)/(j-k), theta=3.14) sim.move_to_com() avars = Andoyer.from_Simulation(sim,j,k, a10=a10, average=True) p = avars.params pvars = Poincare.from_Simulation(sim, average=True) sGamma1 = pvars.particles[1].sGamma sGamma2 = pvars.particles[2].sGamma sLambda1 = pvars.particles[1].sLambda sLambda2 = pvars.particles[2].sLambda lambda1 = pvars.particles[1].l lambda2 = pvars.particles[2].l gamma1 = pvars.particles[1].gamma gamma2 = pvars.particles[2].gamma n10 = np.sqrt(p['G']*p['M1']/p['a10']**3) n20 = np.sqrt(p['G']*p['M2']/p['a10']**3*p['alpha']**3) z1 = np.sqrt(2*sGamma1/p['sLambda10']) z2 = np.sqrt(2*sGamma2/p['sLambda20']) Hkep = -0.5*(n10*p['m1']*p['sLambda10']**3/sLambda1**2 + n20*p['m2']*p['sLambda20']**3/sLambda2**2) sL10 = p['sLambda10'] sL20 = p['sLambda20'] Hkepexpanded = -n10*p['m1']*sL10/2*(1. - 2*avars.dL1hat + 3*avars.dL1hat**2)-n20*p['m2']*sL20/2*(1. - 2*avars.dL2hat + 3*avars.dL2hat**2) Hresprefac = -p['G']*p['m1']*p['m2']/p['a10']*p['alpha'] Hres = Hresprefac*(p['f']*z1*np.cos(j*lambda2 - (j-k)*lambda1 + gamma1)+p['g']*z2*np.cos(j*lambda2 - (j-k)*lambda1 + gamma2)) H0 = -p['n0']*p['K0']/2 H1 = p['eta']*p['n0']*avars.dK*(1-1.5*p['eta']/p['K0']*avars.dK) H2 = p['eta']*p['a']*avars.dP**2 Hkeptransformed = H0 + H1 + H2 Hrestransformed = p['eta']*p['c']*(2*avars.Psi1)**(k/2.)*np.cos(avars.theta+k*avars.psi1) self.assertAlmostEqual(Hkeptransformed, Hkepexpanded, delta=1.e-15) # should be exact self.assertAlmostEqual(Hrestransformed, Hres, delta=1.e-15) # should be exact for first order resonance (k=1) self.assertAlmostEqual(Hkepexpanded, Hkep, delta=(a10-1.)**2) # should match to O(da/a)^2, atrue=1, a10=a10 #Hfinal = -p['eta']*p['Phi0']/p['tau']*(4.*avars.Phi**2 - 3.*avars.Phiprime*avars.Phi + 9./16.*avars.Phiprime**2 + (2.*avars.Phi)**(k/2.)*np.cos(avars.phi) - p['n0']*p['tau']/p['Phi0']*avars.dK*(1.-1.5*p['eta']/p['K0']*avars.dK))+ H0 Hfinal = -p['eta']*p['Phi0']/p['tau']*(4.*(avars.Phi-avars.B)**2 + (2.*avars.Phi)**(k/2.)*np.cos(avars.phi) - p['n0']*p['tau']/p['Phi0']*avars.dK*(1.-1.5*p['eta']/p['K0']*avars.dK))+ H0 self.assertAlmostEqual(Hfinal, Hkepexpanded+Hres, delta=1.e-15) # should be exact
def populate_trio(sim, trio, pairs, jk, a10, tseries, i): Ns = 3 ps = sim.particles for q, [label, i1, i2] in enumerate(pairs): e1x, e1y = ps[i1].e * np.cos(ps[i1].pomega), -ps[i1].e * np.sin( ps[i1].pomega) e2x, e2y = ps[i2].e * np.cos(ps[i2].pomega), -ps[i2].e * np.sin( ps[i2].pomega) try: # it's unlikely but possible for bodies to land nearly on top of each other midtimestep and get a big kick that doesn't get caught by collisions post timestep. All these cases are unstable, so flag them as above # average only affects a (Lambda) Z and I think Zcom don't depend on a. Zsep and Zstar slightly, but several sig figs in even when close at conjunction j, k = jk[label] avars = Andoyer.from_Simulation(sim, a10=a10[label], j=j, k=k, i1=i1, i2=i2, average=False) tseries[i, Ns * q + 1] = avars.Z * np.sqrt(2) # EM = Z*sqrt(2) tseries[i, Ns * q + 2] = avars.Zcom # no sqrt(2) factor except: # no nearby resonance, use EM and ecom tseries[i, Ns * q + 1] = np.sqrt((e2x - e1x)**2 + (e2y - e1y)**2) tseries[i, Ns * q + 2] = np.sqrt( (ps[i1].m * e1x + ps[i2].m * e2x)**2 + (ps[i1].m * e1y + ps[i2].m * e2y)**2) / (ps[i1].m + ps[i2].m) try: j, k, tseries[i, Ns * q + 3] = find_strongest_MMR( sim, i1, i2 ) # will fail if any osculating orbit is hyperbolic, flag as unstable except: return False tseries[i, 7] = sim.calculate_megno() # megno return True
def get_resonant(seed, Nplanets=3): r = random.Random() r.seed(seed) Phiprimecrits = [0, 1., -2. / 3.] pairs = ['inner', 'outer', 'split'] k = r.randint(1, 2) pairindex = r.randint(0, 2) pair = pairs[pairindex] m1 = logunif(r, 1.e-7, 1.e-4) m2 = logunif(r, 1.e-7, 1.e-4) eH = ((m1 + m2) / 3.)**(1. / 3.) ehillstable = 3.5 * eH jmax = k / (1 - 1 / (1 + 3.5 * eH)**1.5) if pair == 'split': if Nplanets == 2: return # don't want 2planet systems 60 hill radii apart maxHillradii = 60. # 3rd planet will go in middle so draw up to 60 else: maxHillradii = 30. jmin = max(k + 1, k / (1 - 1 / (1 + maxHillradii * eH)**1.5)) jmin = int(np.ceil(jmin)) jmax = int(np.floor(jmax)) if k == 2: # if k = 2, want odd j so we don't get e.g. 8:6 = 4:3 if jmin % 2 == 0: # even jmin += 1 if jmax % 2 == 0: jmax -= 1 j = r.randrange( jmin, jmax + 1, k) # choose randomly between limits in steps of k e.g. (3,5,7,9) a1 = 1. a2 = (float(j) / (j - k))**(2. / 3.) ecross1 = (a2 - a1) / a1 ecross2 = (a2 - a1) / a2 emin1 = m2 / ecross1**2 emin2 = m1 / ecross2**2 emin = max( emin1, emin2 ) # take as min Z the larger of the kicks a planet gets at conjunction emin = max( emin, (m1 + m2)**(1. / k) ) # below mtot^1/k, the resonant term is smaller than the second order mass terms we ignore emax = min(ecross1, ecross2) avars = Andoyer(j=j, k=k, X=0, Y=0, m1=m1, m2=m2) Phiprimecrit = Phiprimecrits[k] Xcrit = get_Xstarres(k, Phiprimecrit) Phicrit = 0.5 * Xcrit**2 emin = max( avars.Phi_to_Z(Phicrit), emin ) # first quantity is value of Z at bifurcation when res first appears Zstar = logunif(r, emin, emax) libfac = logunif(r, 3.e-3, 3) negative = r.randint(0, 1) if negative: libfac *= -1 Zcom = logunif(r, emin, emax) avars = Andoyer.from_elements(j=j, k=k, Zstar=Zstar, libfac=libfac, m1=m1, m2=m2, Zcom=Zcom, phiZcom=r.uniform(0, 2 * np.pi), theta=r.uniform(0, 2 * np.pi), theta1=r.uniform(0, 2 * np.pi)) tmax = r.uniform(0, 10 * avars.tlib) H = AndoyerHamiltonian(avars) H.integrate(tmax) pvars = avars.to_Poincare() ps = pvars.particles if Nplanets == 3: m3 = logunif(r, 1.e-7, 1.e-4) pvarssorted = Poincare(G=pvars.G) if pair == "inner": eH = ((m2 + m3) / 3.)**(1. / 3.) beta = r.uniform(3.5, 30) a3 = a2 * (1 + beta * eH) ecross3 = (a3 - a2) / a3 emin3 = m2 / ecross3**2 e3 = logunif(r, emin3, ecross3) pvarssorted.add(m=ps[1].m, M=ps[1].M, a=ps[1].a, e=ps[1].e, gamma=ps[1].gamma, l=ps[1].l) pvarssorted.add(m=ps[2].m, M=ps[2].M, a=ps[2].a, e=ps[2].e, gamma=ps[2].gamma, l=ps[2].l) pvarssorted.add(m=m3, M=1, a=a3, e=e3, gamma=r.uniform(0, 2 * np.pi), l=r.uniform(0, 2 * np.pi)) elif pair == "outer": eH = ((m1 + m3) / 3.)**(1. / 3.) beta = r.uniform(3.5, 30) a3 = a1 / (1 + beta * eH) ecross3 = (a1 - a3) / a3 emin3 = m1 / ecross3**2 e3 = logunif(r, emin3, ecross3) pvarssorted.add(m=m3, M=1, a=a3, e=e3, gamma=r.uniform(0, 2 * np.pi), l=r.uniform(0, 2 * np.pi)) pvarssorted.add(m=ps[1].m, M=ps[1].M, a=ps[1].a, e=ps[1].e, gamma=ps[1].gamma, l=ps[1].l) pvarssorted.add(m=ps[2].m, M=ps[2].M, a=ps[2].a, e=ps[2].e, gamma=ps[2].gamma, l=ps[2].l) elif pair == "split": eH1 = ((m1 + m3) / 3.)**(1. / 3.) eH2 = ((m2 + m3) / 3.)**(1. / 3.) amin = a1 * (1 + 3.5 * eH1) amax = min(a1 * (1 + 30 * eH1), a2 / (1 + 3.5 * eH2)) if amin > amax: seed += 900000 return get_resonant( seed=seed) # draw new sample (may not be 'split') a3 = r.uniform(amin, amax) ecross3 = min((a3 - a1) / a1, (a2 - a3) / a3) emin3 = max(m1 / ((a3 - a1) / a3)**2, m2 / ((a2 - a3) / a3)**2) e3 = logunif(r, emin3, ecross3) pvarssorted.add(m=ps[1].m, M=ps[1].M, a=ps[1].a, e=ps[1].e, gamma=ps[1].gamma, l=ps[1].l) pvarssorted.add(m=m3, M=1, a=a3, e=e3, gamma=r.uniform(0, 2 * np.pi), l=r.uniform(0, 2 * np.pi)) pvarssorted.add(m=ps[2].m, M=ps[2].M, a=ps[2].a, e=ps[2].e, gamma=ps[2].gamma, l=ps[2].l) sim = pvarssorted.to_Simulation() else: sim = avars.to_Simulation() # add inclinations and scale s.t. a1 = 1, Mprimary=1. and G = 4*pi**2 ps = sim.particles siminc = rebound.Simulation() siminc.G = 4 * np.pi**2 dscale = ps[1].a tscale = ps[1].P mscale = siminc.G * dscale**3 / tscale**2 # ps[0].m + ps[1].m siminc.add(m=ps[0].m / mscale, x=ps[0].x / dscale, y=ps[0].y / dscale, vx=ps[0].vx / dscale * tscale, vy=ps[0].vy / dscale * tscale) for p in ps[1:]: siminc.add(m=p.m / mscale, a=p.a / dscale, e=p.e, inc=logunif(r, 1.e-3, 1.e-1), Omega=r.uniform(0, 2 * np.pi), pomega=p.pomega, l=p.l) rH = siminc.particles[-1].a * (siminc.particles[-1].m / 3. / siminc.particles[0].m)**(1. / 3.) siminc.particles[-1].r = rH siminc.move_to_com() siminc.integrator = "whfast" siminc.dt = 2. * np.sqrt(3) / 100. * siminc.particles[1].P siminc.ri_whfast.safe_mode = 0 siminc.collision = "line" return siminc, j, k, pairindex, Zstar, libfac, Zcom