def test_alpha_method_fft(): pixels = 64 phys = PhysicalModel(pixels=pixels, method="fft") phys_analytic = AnalyticalPhysicalModel(pixels=pixels, image_fov=7) phys2 = PhysicalModel(pixels=pixels, method="conv2d") # test out noise kappa = tf.random.uniform(shape=[1, pixels, pixels, 1]) alphax, alphay = phys.deflection_angle(kappa) alphax2, alphay2 = phys2.deflection_angle(kappa) # assert np.allclose(alphax, alphax2, atol=1e-4) # assert np.allclose(alphay, alphay2, atol=1e-4) # test out an analytical profile kappa = phys_analytic.kappa_field(2, 0.4, 0, 0.1, 0.5) alphax, alphay = phys.deflection_angle(kappa) alphax2, alphay2 = phys2.deflection_angle(kappa) # # assert np.allclose(alphax, alphax2, atol=1e-4) # assert np.allclose(alphay, alphay2, atol=1e-4) im1 = phys_analytic.lens_source_func_given_alpha( tf.concat([alphax, alphay], axis=-1)) im2 = phys_analytic.lens_source_func_given_alpha( tf.concat([alphax2, alphay2], axis=-1)) return alphax, alphax2, im1, im2
def test_lagrange_multiplier_for_lens_intensity(): phys = PhysicalModel(pixels=128) phys_a = AnalyticalPhysicalModel(pixels=128) kappa = phys_a.kappa_field(2.0, e=0.2) x = np.linspace(-1, 1, 128) * phys.src_fov / 2 xx, yy = np.meshgrid(x, x) rho = xx**2 + yy**2 source = tf.math.exp(-0.5 * rho / 0.5**2)[tf.newaxis, ..., tf.newaxis] source = tf.cast(source, tf.float32) y_true = phys.forward(source, kappa) y_pred = phys.forward(0.001 * source, kappa) # rescale it, say it has different units lam_lagrange = tf.reduce_sum(y_true * y_pred, axis=( 1, 2, 3)) / tf.reduce_sum(y_pred**2, axis=(1, 2, 3)) lam_tests = tf.squeeze( tf.cast(tf.linspace(lam_lagrange / 10, lam_lagrange * 10, 1000), tf.float32))[..., tf.newaxis, tf.newaxis, tf.newaxis] log_likelihood_best = 0.5 * tf.reduce_mean( (lam_lagrange * y_pred - y_true)**2 / phys.noise_rms**2, axis=(1, 2, 3)) log_likilhood_test = 0.5 * tf.reduce_mean( (lam_tests * y_pred - y_true)**2 / phys.noise_rms**2, axis=(1, 2, 3)) return log_likilhood_test, log_likelihood_best, tf.squeeze( lam_tests), lam_lagrange
def test_analytical_lensing(): phys = AnalyticalPhysicalModel() source = tf.random.normal([1, 256, 256, 1]) params = [1., 0.1, 0., 0.1, -0.1, 0.01, 3.14] im = phys.lens_source(source, *params) im = phys.lens_source_func(e=0.6) kap = phys.kappa_field(e=0.2) return im.numpy()[0, ..., 0]
def test_lens_source_conv2(): pixels = 64 src_pixels = 32 phys = PhysicalModel(pixels=pixels, src_pixels=src_pixels, kappa_fov=16, image_fov=16) phys_analytic = AnalyticalPhysicalModel(pixels=pixels, image_fov=16) source = tf.random.normal([1, src_pixels, src_pixels, 1]) kappa = phys_analytic.kappa_field(7, 0.1, 0, 0, 0) lens = phys.lens_source(source, kappa) return lens
def test_interpolated_kappa(): import tensorflow_addons as tfa phys = PhysicalModel(pixels=128, src_pixels=32, image_fov=7.68, kappa_fov=5) phys_a = AnalyticalPhysicalModel(pixels=128, image_fov=7.68) kappa = phys_a.kappa_field(r_ein=2., e=0.2) kappa += phys_a.kappa_field(r_ein=1., x0=2., y0=2.) true_lens = phys.lens_source_func(kappa, w=0.2) true_kappa = kappa # Test interpolation of alpha angles on a finer grid # phys = PhysicalModel(pixels=128, src_pixels=32, kappa_pixels=32) phys_a = AnalyticalPhysicalModel(pixels=32, image_fov=7.68) kappa = phys_a.kappa_field(r_ein=2., e=0.2) kappa += phys_a.kappa_field(r_ein=1., x0=2., y0=2.) # kappa2 = phys_a.kappa_field(r_ein=2., e=0.2) # kappa2 += phys_a.kappa_field(r_ein=1., x0=2., y0=2.) # # kappa = tf.concat([kappa, kappa2], axis=1) # Test interpolated kappa lens x = np.linspace(-1, 1, 128) * phys.kappa_fov / 2 x, y = np.meshgrid(x, x) x = tf.constant(x[np.newaxis, ..., np.newaxis], tf.float32) y = tf.constant(y[np.newaxis, ..., np.newaxis], tf.float32) dx = phys.kappa_fov / (32 - 1) xmin = -0.5 * phys.kappa_fov ymin = -0.5 * phys.kappa_fov i_coord = (x - xmin) / dx j_coord = (y - ymin) / dx wrap = tf.concat([i_coord, j_coord], axis=-1) # test_kappa1 = tfa.image.resampler(kappa, wrap) # bilinear interpolation of source on wrap grid # test_lens1 = phys.lens_source_func(test_kappa1, w=0.2) phys2 = PhysicalModel(pixels=128, kappa_pixels=32, method="fft", image_fov=7.68, kappa_fov=5) test_lens1 = phys2.lens_source_func(kappa, w=0.2) # Test interpolated alpha angles lens phys2 = PhysicalModel(pixels=32, src_pixels=32, image_fov=7.68, kappa_fov=5) alpha1, alpha2 = phys2.deflection_angle(kappa) alpha = tf.concat([alpha1, alpha2], axis=-1) alpha = tfa.image.resampler(alpha, wrap) test_lens2 = phys.lens_source_func_given_alpha(alpha, w=0.2) return true_lens, test_lens1, test_lens2
def test_lens_func_given_alpha(): phys = PhysicalModel(pixels=128) phys_a = AnalyticalPhysicalModel(pixels=128) alpha = phys_a.analytical_deflection_angles(x0=0.5, y0=0.5, e=0.4, phi=0., r_ein=1.) lens_true = phys_a.lens_source_func(x0=0.5, y0=0.5, e=0.4, phi=0., r_ein=1., xs=0.5, ys=0.5) lens_pred = phys_a.lens_source_func_given_alpha(alpha, xs=0.5, ys=0.5) lens_pred2 = phys.lens_source_func_given_alpha(alpha, xs=0.5, ys=0.5) fig = raytracer_residual_plot(alpha[0], alpha[0], lens_true[0], lens_pred2[0])
def distributed_strategy(args): tf.random.set_seed(args.seed) np.random.seed(args.seed) model = os.path.join(os.getenv('CENSAI_PATH'), "models", args.model) files = glob.glob( os.path.join(os.getenv('CENSAI_PATH'), "data", args.train_dataset, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files) train_dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type).shuffle(len(files)), block_length=1, num_parallel_calls=tf.data.AUTOTUNE) # Read off global parameters from first example in dataset for physical_params in train_dataset.map(decode_physical_model_info): break train_dataset = train_dataset.map(decode_results).shuffle( buffer_size=args.buffer_size) files = glob.glob( os.path.join(os.getenv('CENSAI_PATH'), "data", args.val_dataset, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files) val_dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type).shuffle(len(files)), block_length=1, num_parallel_calls=tf.data.AUTOTUNE) val_dataset = val_dataset.map(decode_results).shuffle( buffer_size=args.buffer_size) files = glob.glob( os.path.join(os.getenv('CENSAI_PATH'), "data", args.test_dataset, "*.tfrecords")) files = tf.data.Dataset.from_tensor_slices(files) test_dataset = files.interleave(lambda x: tf.data.TFRecordDataset( x, compression_type=args.compression_type).shuffle(len(files)), block_length=1, num_parallel_calls=tf.data.AUTOTUNE) test_dataset = test_dataset.map(decode_results).shuffle( buffer_size=args.buffer_size) ps_lens = PowerSpectrum(bins=args.lens_coherence_bins, pixels=physical_params["pixels"].numpy()) ps_source = PowerSpectrum(bins=args.source_coherence_bins, pixels=physical_params["src pixels"].numpy()) ps_kappa = PowerSpectrum(bins=args.kappa_coherence_bins, pixels=physical_params["kappa pixels"].numpy()) phys = PhysicalModel( pixels=physical_params["pixels"].numpy(), kappa_pixels=physical_params["kappa pixels"].numpy(), src_pixels=physical_params["src pixels"].numpy(), image_fov=physical_params["image fov"].numpy(), kappa_fov=physical_params["kappa fov"].numpy(), src_fov=physical_params["source fov"].numpy(), method="fft", ) phys_sie = AnalyticalPhysicalModel( pixels=physical_params["pixels"].numpy(), image_fov=physical_params["image fov"].numpy(), src_fov=physical_params["source fov"].numpy()) with open(os.path.join(model, "unet_hparams.json")) as f: unet_params = json.load(f) unet_params["kernel_l2_amp"] = args.l2_amp unet = Model(**unet_params) ckpt = tf.train.Checkpoint(net=unet) checkpoint_manager = tf.train.CheckpointManager(ckpt, model, 1) checkpoint_manager.checkpoint.restore( checkpoint_manager.latest_checkpoint).expect_partial() with open(os.path.join(model, "rim_hparams.json")) as f: rim_params = json.load(f) rim = RIM(phys, unet, **rim_params) dataset_names = [args.train_dataset, args.val_dataset, args.test_dataset] dataset_shapes = [args.train_size, args.val_size, args.test_size] model_name = os.path.split(model)[-1] # from censai.utils import nulltape # def call_with_mask(self, lensed_image, noise_rms, psf, mask, outer_tape=nulltape): # """ # Used in training. Return linked kappa and source maps. # """ # batch_size = lensed_image.shape[0] # source, kappa, source_grad, kappa_grad, states = self.initial_states(batch_size) # initiate all tensors to 0 # source, kappa, states = self.time_step(lensed_image, source, kappa, source_grad, kappa_grad, # states) # Use lens to make an initial guess with Unet # source_series = tf.TensorArray(DTYPE, size=self.steps) # kappa_series = tf.TensorArray(DTYPE, size=self.steps) # chi_squared_series = tf.TensorArray(DTYPE, size=self.steps) # # record initial guess # source_series = source_series.write(index=0, value=source) # kappa_series = kappa_series.write(index=0, value=kappa) # # Main optimization loop # for current_step in tf.range(self.steps - 1): # with outer_tape.stop_recording(): # with tf.GradientTape() as g: # g.watch(source) # g.watch(kappa) # y_pred = self.physical_model.forward(self.source_link(source), self.kappa_link(kappa), psf) # flux_term = tf.square( # tf.reduce_sum(y_pred, axis=(1, 2, 3)) - tf.reduce_sum(lensed_image, axis=(1, 2, 3))) # log_likelihood = 0.5 * tf.reduce_sum( # tf.square(y_pred - mask * lensed_image) / noise_rms[:, None, None, None] ** 2, axis=(1, 2, 3)) # cost = tf.reduce_mean(log_likelihood + self.flux_lagrange_multiplier * flux_term) # source_grad, kappa_grad = g.gradient(cost, [source, kappa]) # source_grad, kappa_grad = self.grad_update(source_grad, kappa_grad, current_step) # source, kappa, states = self.time_step(lensed_image, source, kappa, source_grad, kappa_grad, states) # source_series = source_series.write(index=current_step + 1, value=source) # kappa_series = kappa_series.write(index=current_step + 1, value=kappa) # chi_squared_series = chi_squared_series.write(index=current_step, # value=log_likelihood / self.pixels ** 2) # renormalize chi squared here # # last step score # log_likelihood = self.physical_model.log_likelihood(y_true=lensed_image, source=self.source_link(source), # kappa=self.kappa_link(kappa), psf=psf, noise_rms=noise_rms) # chi_squared_series = chi_squared_series.write(index=self.steps - 1, value=log_likelihood) # return source_series.stack(), kappa_series.stack(), chi_squared_series.stack() with h5py.File( os.path.join( os.getenv("CENSAI_PATH"), "results", args.experiment_name + "_" + model_name + f"_{THIS_WORKER:02d}.h5"), 'w') as hf: for i, dataset in enumerate([train_dataset, val_dataset, test_dataset]): g = hf.create_group(f'{dataset_names[i]}') data_len = dataset_shapes[i] // N_WORKERS g.create_dataset(name="lens", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="psf", shape=[ data_len, physical_params['psf pixels'], physical_params['psf pixels'], 1 ], dtype=np.float32) g.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32) g.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32) g.create_dataset( name="source", shape=[data_len, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) g.create_dataset( name="kappa", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred_reoptimized", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="source_pred", shape=[ data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1 ], dtype=np.float32) g.create_dataset( name="source_pred_reoptimized", shape=[data_len, phys.src_pixels, phys.src_pixels, 1]) g.create_dataset(name="kappa_pred", shape=[ data_len, rim.steps, phys.kappa_pixels, phys.kappa_pixels, 1 ], dtype=np.float32) g.create_dataset( name="kappa_pred_reoptimized", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) g.create_dataset(name="chi_squared", shape=[data_len, rim.steps], dtype=np.float32) g.create_dataset(name="chi_squared_reoptimized", shape=[data_len], dtype=np.float32) g.create_dataset(name="chi_squared_reoptimized_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) g.create_dataset(name="source_optim_mse", shape=[data_len], dtype=np.float32) g.create_dataset(name="source_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) g.create_dataset(name="kappa_optim_mse", shape=[data_len], dtype=np.float32) g.create_dataset(name="kappa_optim_mse_series", shape=[data_len, args.re_optimize_steps], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum2", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum_reoptimized", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum2", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum_reoptimized", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_coherence_spectrum", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_coherence_spectrum_reoptimized", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_frequencies", shape=[args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_frequencies", shape=[args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_frequencies", shape=[args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32) g.create_dataset(name="source_fov", shape=[1], dtype=np.float32) g.create_dataset(name="lens_fov", shape=[1], dtype=np.float32) dataset = dataset.skip(data_len * (THIS_WORKER - 1)).take(data_len) for batch, (lens, source, kappa, noise_rms, psf, fwhm) in enumerate( dataset.batch(1).prefetch( tf.data.experimental.AUTOTUNE)): checkpoint_manager.checkpoint.restore( checkpoint_manager.latest_checkpoint).expect_partial( ) # reset model weights # Compute predictions for kappa and source source_pred, kappa_pred, chi_squared = rim.predict( lens, noise_rms, psf) lens_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf) # Re-optimize weights of the model STEPS = args.re_optimize_steps learning_rate_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate=args.learning_rate, decay_rate=args.decay_rate, decay_steps=args.decay_steps, staircase=args.staircase) optim = tf.keras.optimizers.RMSprop( learning_rate=learning_rate_schedule) chi_squared_series = tf.TensorArray(DTYPE, size=STEPS) source_mse = tf.TensorArray(DTYPE, size=STEPS) kappa_mse = tf.TensorArray(DTYPE, size=STEPS) best = chi_squared[-1, 0] # best = abs(2*chi_squared[-1, 0] - 1) # best_chisq = 2*chi_squared[-1, 0] source_best = source_pred[-1] kappa_best = kappa_pred[-1] # source_mean = source_pred[-1] # kappa_mean = rim.kappa_link(kappa_pred[-1]) # source_std = tf.zeros_like(source_mean) # kappa_std = tf.zeros_like(kappa_mean) # counter = 0 for current_step in tqdm(range(STEPS)): with tf.GradientTape() as tape: tape.watch(unet.trainable_variables) # s, k, chi_sq = call_with_mask(rim, lens, noise_rms, psf, mask, tape) s, k, chi_sq = rim.call(lens, noise_rms, psf, outer_tape=tape) cost = tf.reduce_mean(chi_sq) # mean over time steps cost += tf.reduce_sum(rim.unet.losses) log_likelihood = chi_sq[-1] chi_squared_series = chi_squared_series.write( index=current_step, value=log_likelihood) source_o = s[-1] kappa_o = k[-1] source_mse = source_mse.write( index=current_step, value=tf.reduce_mean( (source_o - rim.source_inverse_link(source))**2)) kappa_mse = kappa_mse.write( index=current_step, value=tf.reduce_mean( (kappa_o - rim.kappa_inverse_link(kappa))**2)) if chi_sq[-1, 0] < args.converged_chisq: source_best = rim.source_link(source_o) kappa_best = rim.kappa_link(kappa_o) best = chi_sq[-1, 0] break if chi_sq[-1, 0] < best: source_best = rim.source_link(source_o) kappa_best = rim.kappa_link(kappa_o) best = chi_sq[-1, 0] source_mse_best = tf.reduce_mean( (source_best - rim.source_inverse_link(source))**2) kappa_mse_best = tf.reduce_mean( (kappa_best - rim.kappa_inverse_link(kappa))**2) # if counter > 0: # # Welford's online algorithm # # source # delta = source_o - source_mean # source_mean = (counter * source_mean + (counter + 1) * source_o)/(counter + 1) # delta2 = source_o - source_mean # source_std += delta * delta2 # # kappa # delta = rim.kappa_link(kappa_o) - kappa_mean # kappa_mean = (counter * kappa_mean + (counter + 1) * rim.kappa_link(kappa_o)) / (counter + 1) # delta2 = rim.kappa_link(kappa_o) - kappa_mean # kappa_std += delta * delta2 # if best_chisq < args.converged_chisq: # counter += 1 # if counter == args.window: # break # if 2*chi_sq[-1, 0] < best_chisq: # best_chisq = 2*chi_sq[-1, 0] # if abs(2*chi_sq[-1, 0] - 1) < best: # source_best = rim.source_link(source_o) # kappa_best = rim.kappa_link(kappa_o) # best = abs(2 * chi_squared[-1, 0] - 1) # source_mse_best = tf.reduce_mean((source_best - rim.source_inverse_link(source)) ** 2) # kappa_mse_best = tf.reduce_mean((kappa_best - rim.kappa_inverse_link(kappa)) ** 2) grads = tape.gradient(cost, unet.trainable_variables) optim.apply_gradients(zip(grads, unet.trainable_variables)) source_o = source_best kappa_o = kappa_best y_pred = phys.forward(source_o, kappa_o, psf) chi_sq_series = tf.transpose(chi_squared_series.stack(), perm=[1, 0]) source_mse = source_mse.stack()[None, ...] kappa_mse = kappa_mse.stack()[None, ...] # kappa_std /= float(args.window) # source_std /= float(args.window) # Compute Power spectrum of converged predictions _ps_lens = ps_lens.cross_correlation_coefficient( lens[..., 0], lens_pred[..., 0]) _ps_lens3 = ps_lens.cross_correlation_coefficient( lens[..., 0], y_pred[..., 0]) _ps_kappa = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_pred[-1])[..., 0]) _ps_kappa2 = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_o[..., 0])) _ps_source = ps_source.cross_correlation_coefficient( source[..., 0], source_pred[-1][..., 0]) _ps_source3 = ps_source.cross_correlation_coefficient( source[..., 0], source_o[..., 0]) # save results g["lens"][batch] = lens.numpy().astype(np.float32) g["psf"][batch] = psf.numpy().astype(np.float32) g["psf_fwhm"][batch] = fwhm.numpy().astype(np.float32) g["noise_rms"][batch] = noise_rms.numpy().astype(np.float32) g["source"][batch] = source.numpy().astype(np.float32) g["kappa"][batch] = kappa.numpy().astype(np.float32) g["lens_pred"][batch] = lens_pred.numpy().astype(np.float32) g["lens_pred_reoptimized"][batch] = y_pred.numpy().astype( np.float32) g["source_pred"][batch] = tf.transpose( source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["source_pred_reoptimized"][batch] = source_o.numpy().astype( np.float32) g["kappa_pred"][batch] = tf.transpose( kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["kappa_pred_reoptimized"][batch] = kappa_o.numpy().astype( np.float32) g["chi_squared"][batch] = tf.transpose( chi_squared).numpy().astype(np.float32) g["chi_squared_reoptimized"][batch] = best.numpy().astype( np.float32) g["chi_squared_reoptimized_series"][ batch] = chi_sq_series.numpy().astype(np.float32) g["source_optim_mse"][batch] = source_mse_best.numpy().astype( np.float32) g["source_optim_mse_series"][batch] = source_mse.numpy( ).astype(np.float32) g["kappa_optim_mse"][batch] = kappa_mse_best.numpy().astype( np.float32) g["kappa_optim_mse_series"][batch] = kappa_mse.numpy().astype( np.float32) g["lens_coherence_spectrum"][batch] = _ps_lens g["lens_coherence_spectrum_reoptimized"][batch] = _ps_lens3 g["source_coherence_spectrum"][batch] = _ps_source g["source_coherence_spectrum_reoptimized"][batch] = _ps_source3 g["lens_coherence_spectrum"][batch] = _ps_lens g["lens_coherence_spectrum"][batch] = _ps_lens g["kappa_coherence_spectrum"][batch] = _ps_kappa g["kappa_coherence_spectrum_reoptimized"][batch] = _ps_kappa2 if batch == 0: _, f = np.histogram(np.fft.fftfreq( phys.pixels)[:phys.pixels // 2], bins=ps_lens.bins) f = (f[:-1] + f[1:]) / 2 g["lens_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.src_pixels)[:phys.src_pixels // 2], bins=ps_source.bins) f = (f[:-1] + f[1:]) / 2 g["source_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.kappa_pixels)[:phys.kappa_pixels // 2], bins=ps_kappa.bins) f = (f[:-1] + f[1:]) / 2 g["kappa_frequencies"][:] = f g["kappa_fov"][0] = phys.kappa_fov g["source_fov"][0] = phys.src_fov # Create SIE test g = hf.create_group(f'SIE_test') data_len = args.sie_size // N_WORKERS sie_dataset = test_dataset.skip(data_len * (THIS_WORKER - 1)).take(data_len) g.create_dataset(name="lens", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="psf", shape=[ data_len, physical_params['psf pixels'], physical_params['psf pixels'], 1 ], dtype=np.float32) g.create_dataset(name="psf_fwhm", shape=[data_len], dtype=np.float32) g.create_dataset(name="noise_rms", shape=[data_len], dtype=np.float32) g.create_dataset(name="source", shape=[data_len, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) g.create_dataset( name="kappa", shape=[data_len, phys.kappa_pixels, phys.kappa_pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset(name="lens_pred2", shape=[data_len, phys.pixels, phys.pixels, 1], dtype=np.float32) g.create_dataset( name="source_pred", shape=[data_len, rim.steps, phys.src_pixels, phys.src_pixels, 1], dtype=np.float32) g.create_dataset(name="kappa_pred", shape=[ data_len, rim.steps, phys.kappa_pixels, phys.kappa_pixels, 1 ], dtype=np.float32) g.create_dataset(name="chi_squared", shape=[data_len, rim.steps], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_coherence_spectrum2", shape=[data_len, args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_coherence_spectrum2", shape=[data_len, args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_coherence_spectrum", shape=[data_len, args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="lens_frequencies", shape=[args.lens_coherence_bins], dtype=np.float32) g.create_dataset(name="source_frequencies", shape=[args.source_coherence_bins], dtype=np.float32) g.create_dataset(name="kappa_frequencies", shape=[args.kappa_coherence_bins], dtype=np.float32) g.create_dataset(name="einstein_radius", shape=[data_len], dtype=np.float32) g.create_dataset(name="position", shape=[data_len, 2], dtype=np.float32) g.create_dataset(name="orientation", shape=[data_len], dtype=np.float32) g.create_dataset(name="ellipticity", shape=[data_len], dtype=np.float32) g.create_dataset(name="kappa_fov", shape=[1], dtype=np.float32) g.create_dataset(name="source_fov", shape=[1], dtype=np.float32) g.create_dataset(name="lens_fov", shape=[1], dtype=np.float32) for batch, (_, source, _, noise_rms, psf, fwhm) in enumerate( sie_dataset.take(data_len).batch(args.batch_size).prefetch( tf.data.experimental.AUTOTUNE)): batch_size = source.shape[0] # Create some SIE kappa maps _r = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=0, maxval=args.max_shift) _theta = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=-np.pi, maxval=np.pi) x0 = _r * tf.math.cos(_theta) y0 = _r * tf.math.sin(_theta) ellipticity = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=0., maxval=args.max_ellipticity) phi = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=-np.pi, maxval=np.pi) einstein_radius = tf.random.uniform(shape=[batch_size, 1, 1, 1], minval=args.min_theta_e, maxval=args.max_theta_e) kappa = phys_sie.kappa_field(x0=x0, y0=y0, e=ellipticity, phi=phi, r_ein=einstein_radius) lens = phys.noisy_forward(source, kappa, noise_rms=noise_rms, psf=psf) # Compute predictions for kappa and source source_pred, kappa_pred, chi_squared = rim.predict( lens, noise_rms, psf) lens_pred = phys.forward(source_pred[-1], kappa_pred[-1], psf) # Compute Power spectrum of converged predictions _ps_lens = ps_lens.cross_correlation_coefficient( lens[..., 0], lens_pred[..., 0]) _ps_kappa = ps_kappa.cross_correlation_coefficient( log_10(kappa)[..., 0], log_10(kappa_pred[-1])[..., 0]) _ps_source = ps_source.cross_correlation_coefficient( source[..., 0], source_pred[-1][..., 0]) # save results i_begin = batch * args.batch_size i_end = i_begin + batch_size g["lens"][i_begin:i_end] = lens.numpy().astype(np.float32) g["psf"][i_begin:i_end] = psf.numpy().astype(np.float32) g["psf_fwhm"][i_begin:i_end] = fwhm.numpy().astype(np.float32) g["noise_rms"][i_begin:i_end] = noise_rms.numpy().astype( np.float32) g["source"][i_begin:i_end] = source.numpy().astype(np.float32) g["kappa"][i_begin:i_end] = kappa.numpy().astype(np.float32) g["lens_pred"][i_begin:i_end] = lens_pred.numpy().astype( np.float32) g["source_pred"][i_begin:i_end] = tf.transpose( source_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["kappa_pred"][i_begin:i_end] = tf.transpose( kappa_pred, perm=(1, 0, 2, 3, 4)).numpy().astype(np.float32) g["chi_squared"][i_begin:i_end] = 2 * tf.transpose( chi_squared).numpy().astype(np.float32) g["lens_coherence_spectrum"][i_begin:i_end] = _ps_lens.numpy( ).astype(np.float32) g["source_coherence_spectrum"][i_begin:i_end] = _ps_source.numpy( ).astype(np.float32) g["kappa_coherence_spectrum"][i_begin:i_end] = _ps_kappa.numpy( ).astype(np.float32) g["einstein_radius"][ i_begin:i_end] = einstein_radius[:, 0, 0, 0].numpy().astype(np.float32) g["position"][i_begin:i_end] = tf.stack( [x0[:, 0, 0, 0], y0[:, 0, 0, 0]], axis=1).numpy().astype(np.float32) g["ellipticity"][i_begin:i_end] = ellipticity[:, 0, 0, 0].numpy().astype( np.float32) g["orientation"][i_begin:i_end] = phi[:, 0, 0, 0].numpy().astype(np.float32) if batch == 0: _, f = np.histogram(np.fft.fftfreq(phys.pixels)[:phys.pixels // 2], bins=ps_lens.bins) f = (f[:-1] + f[1:]) / 2 g["lens_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.src_pixels)[:phys.src_pixels // 2], bins=ps_source.bins) f = (f[:-1] + f[1:]) / 2 g["source_frequencies"][:] = f _, f = np.histogram(np.fft.fftfreq( phys.kappa_pixels)[:phys.kappa_pixels // 2], bins=ps_kappa.bins) f = (f[:-1] + f[1:]) / 2 g["kappa_frequencies"][:] = f g["kappa_fov"][0] = phys.kappa_fov g["source_fov"][0] = phys.src_fov
psf = tf.transpose(psf, perm=[1, 2, 0, 3]) # put different psf on "in channels" dimension convolved_images = tf.nn.depthwise_conv2d(images, psf, strides=[1, 1, 1, 1], padding="SAME", data_format="NHWC") convolved_images = tf.transpose(convolved_images, perm=[3, 1, 2, 0]) # put channels back to batch dimension return convolved_images if __name__ == '__main__': phys = PhysicalModel(128) from censai import AnalyticalPhysicalModel # kappa = AnalyticalPhysicalModel(64).kappa_field(r_ein=np.array([1., 2.])[:, None, None, None]) # psf = phys.psf_models(np.array([0.4, 0.12])) import matplotlib.pyplot as plt # x = tf.random.normal(shape=(2, 64, 64, 1)) # y = phys.noisy_forward(x, kappa, np.array([0.01, 0.04]), psf) # # out = phys.convolve_with_psf(x, psf) # fig, (ax1, ax2) = plt.subplots(1, 2) # ax1.imshow(y[0, ..., 0]) # ax1.set_title("0.4") # ax2.imshow(y[1, ..., 0]) # ax2.set_title("0.12") # # print(out.shape) # plt.show() # print(psf.numpy().sum(axis=(1, 2, 3))) kappa = AnalyticalPhysicalModel(128).kappa_field(r_ein=1.5, e=0.4) jacobian = phys.jacobian(kappa) jac_det = tf.linalg.det(jacobian) plt.imshow(jac_det[0], cmap="seismic", extent=[-7.69/2, 7.69/2]*2) plt.colorbar() contour = plt.contour(jac_det[0], levels=[0], cmap="gray", extent=[-7.69/2, 7.69/2]*2) plt.show()