예제 #1
0
def tansey_linear_regression(points):
    """
    to be commented.
    @param points is a list of tuples (x,y) of float values.
    @return intercept,slope

    """
    if len(points)==0:
        return 0.

    sumOfXSq = 0.
    sumCodeviates = 0.
    n = len(points)

    for x,y in points:
        sumCodeviates += (x*y)
        sumOfXSq += (x*x)

    sum_x  = central.fsum(  [x for x,y in points] )
    sum_y  = central.fsum(  [y for x,y in points] )
    mean_x = central.fmean( [x for x,y in points] )
    mean_y = central.fmean( [y for x,y in points] )

    ssx = sumOfXSq - ((sum_x*sum_x) / n)
    sco = sumCodeviates - ((sum_x * sum_y) / n)

    b = mean_y - ((sco / ssx) * mean_x)
    m = sco / ssx

    return b, m
예제 #2
0
def tga_linear_regression(points):
    """
    to be commented.

    @param points is a list of tuples (x,y) of float values.
    @return intercept,slope

    """
    if len(points)==0:
        return 0.

    # Fix means
    mean_x = central.fmean( [x for x,y in points] )
    mean_y = central.fmean( [y for x,y in points] )

    xysum  = 0.
    xsqsum = 0.
    for x,y in points:
        dx = x - mean_x
        dy = y - mean_y
        xysum  += (dx*dy)
        xsqsum += (dx*dx)

    # Intercept
    if xsqsum == 0:
        m = xysum
    else:
        m = xysum / xsqsum
    # Slope
    b = mean_y - m * mean_x
    return b,m
예제 #3
0
파일: moment.py 프로젝트: drammock/sppas
def lvariation(items):
    """
    Calculates the coefficient of variation of data values.
    It shows the extent of variability in relation to the mean.
    It's a standardized measure of dispersion: stdev / mean and returned as a percentage.
    @param items (list) list of data values
    @return (float)
    """
    return variability.lstdev(items) / float(central.fmean(items)) * 100.0
예제 #4
0
파일: moment.py 프로젝트: drammock/sppas
def lmoment(items, moment=1):
    """
    Calculates the r-th moment about the mean for a sample:
    1/n * SUM((items(i)-mean)**r)
    @param items (list) list of data values
    @return (float)
    """
    if moment == 1:
        return 0.0
    mn = central.fmean(items)
    momentlist = [(i - mn) ** moment for i in items]
    return sum(momentlist) / float(len(items))
예제 #5
0
def lvariance(items):
    """
    Calculates the variance of the data values,
    using N for the denominator.
    The variance is a measure of dispersion near the mean.
    @param items (list) list of data values
    @return (float)
    """
    if len(items) < 2:
        return 0.0
    mn = central.fmean(items)
    return central.fsum(pow(i - mn, 2) for i in items) / (len(items))
예제 #6
0
def lz(items, score):
    """
    Calculates the z-score for a given input score, given that score and the
    data values from which that score came.
    The z-score determines the relative location of a data value.
    @param items (list) list of data values
    @param score (float) a score of any items
    @return (float)
    """
    if len(items) < 2:
        return 0.0
    return (score - central.fmean(items)) / lstdev(items)
예제 #7
0
    @param items (list) list of data values
    @return (float)

    """
    if len(items) < 2:
        return 0.0
    n = len(items) - 1
    sumd = 0.0
    for i in range(n):
        d1 = items[i]
        d2 = items[i + 1]
        delta = math.fabs(d1 - d2)
        meand = (d1 + d2) / 2.0
        sumd += delta / meand

    return 100.0 * sumd / n


# ----------------------------------------------------------------------------

if __name__ == "__main__":

    l = [x * x for x in range(1, 11)]
    print l
    print "mean:", central.fmean(l)
    print "median:", central.fmedian(l)
    print "variance:", lvariance(l)
    print "standard deviation:", lstdev(l)
    print "rPVI:", rPVI(l)
    print "nPVI:", nPVI(l)
예제 #8
0
파일: moment.py 프로젝트: drammock/sppas
    a high kurtosis distribution has a sharper peak and fatter tails,
    while a low kurtosis distribution has a more rounded peak and thinner
    tails.
    @param items (list) list of data values
    @return (float)
    """
    return lmoment(items, 4) / pow(lmoment(items, 2), 2.0)


# ----------------------------------------------------------------------------

if __name__ == "__main__":

    import datetime

    l = [x * x for x in range(1, 500)]

    print "moment:"
    print datetime.datetime.now().isoformat()
    moment = 10
    mn = central.fmean(l)
    s = 0
    for x in l:
        s = s + (x - mn) ** moment
    print s / float(len(l))

    print datetime.datetime.now().isoformat()
    print lmoment(l, moment)
    print datetime.datetime.now().isoformat()
    print