def run(self, workspace): '''Run the module on the image set''' seed_objects_name = self.seed_objects_name.value skeleton_name = self.image_name.value seed_objects = workspace.object_set.get_objects(seed_objects_name) labels = seed_objects.segmented labels_count = np.max(labels) label_range = np.arange(labels_count, dtype=np.int32) + 1 skeleton_image = workspace.image_set.get_image( skeleton_name, must_be_binary=True) skeleton = skeleton_image.pixel_data if skeleton_image.has_mask: skeleton = skeleton & skeleton_image.mask try: labels = skeleton_image.crop_image_similarly(labels) except: labels, m1 = cpo.size_similarly(skeleton, labels) labels[~m1] = 0 # # The following code makes a ring around the seed objects with # the skeleton trunks sticking out of it. # # Create a new skeleton with holes at the seed objects # First combine the seed objects with the skeleton so # that the skeleton trunks come out of the seed objects. # # Erode the labels once so that all of the trunk branchpoints # will be within the labels # # # Dilate the objects, then subtract them to make a ring # my_disk = morph.strel_disk(1.5).astype(int) dilated_labels = grey_dilation(labels, footprint=my_disk) seed_mask = dilated_labels > 0 combined_skel = skeleton | seed_mask closed_labels = grey_erosion(dilated_labels, footprint=my_disk) seed_center = closed_labels > 0 combined_skel = combined_skel & (~seed_center) # # Fill in single holes (but not a one-pixel hole made by # a one-pixel image) # if self.wants_to_fill_holes: def size_fn(area, is_object): return (~ is_object) and (area <= self.maximum_hole_size.value) combined_skel = morph.fill_labeled_holes( combined_skel, ~seed_center, size_fn) # # Reskeletonize to make true branchpoints at the ring boundaries # combined_skel = morph.skeletonize(combined_skel) # # The skeleton outside of the labels # outside_skel = combined_skel & (dilated_labels == 0) # # Associate all skeleton points with seed objects # dlabels, distance_map = propagate.propagate(np.zeros(labels.shape), dilated_labels, combined_skel, 1) # # Get rid of any branchpoints not connected to seeds # combined_skel[dlabels == 0] = False # # Find the branchpoints # branch_points = morph.branchpoints(combined_skel) # # Odd case: when four branches meet like this, branchpoints are not # assigned because they are arbitrary. So assign them. # # . . # B. # .B # . . # odd_case = (combined_skel[:-1, :-1] & combined_skel[1:, :-1] & combined_skel[:-1, 1:] & combined_skel[1, 1]) branch_points[:-1, :-1][odd_case] = True branch_points[1:, 1:][odd_case] = True # # Find the branching counts for the trunks (# of extra branches # eminating from a point other than the line it might be on). # branching_counts = morph.branchings(combined_skel) branching_counts = np.array([0, 0, 0, 1, 2])[branching_counts] # # Only take branches within 1 of the outside skeleton # dilated_skel = scind.binary_dilation(outside_skel, morph.eight_connect) branching_counts[~dilated_skel] = 0 # # Find the endpoints # end_points = morph.endpoints(combined_skel) # # We use two ranges for classification here: # * anything within one pixel of the dilated image is a trunk # * anything outside of that range is a branch # nearby_labels = dlabels.copy() nearby_labels[distance_map > 1.5] = 0 outside_labels = dlabels.copy() outside_labels[nearby_labels > 0] = 0 # # The trunks are the branchpoints that lie within one pixel of # the dilated image. # if labels_count > 0: trunk_counts = fix(scind.sum(branching_counts, nearby_labels, label_range)).astype(int) else: trunk_counts = np.zeros((0,), int) # # The branches are the branchpoints that lie outside the seed objects # if labels_count > 0: branch_counts = fix(scind.sum(branch_points, outside_labels, label_range)) else: branch_counts = np.zeros((0,), int) # # Save the endpoints # if labels_count > 0: end_counts = fix(scind.sum(end_points, outside_labels, label_range)) else: end_counts = np.zeros((0,), int) # # Calculate the distances # total_distance = morph.skeleton_length( dlabels * outside_skel, label_range) # # Save measurements # m = workspace.measurements assert isinstance(m, cpmeas.Measurements) feature = "_".join((C_NEURON, F_NUMBER_TRUNKS, skeleton_name)) m.add_measurement(seed_objects_name, feature, trunk_counts) feature = "_".join((C_NEURON, F_NUMBER_NON_TRUNK_BRANCHES, skeleton_name)) m.add_measurement(seed_objects_name, feature, branch_counts) feature = "_".join((C_NEURON, F_NUMBER_BRANCH_ENDS, skeleton_name)) m.add_measurement(seed_objects_name, feature, end_counts) feature = "_".join((C_NEURON, F_TOTAL_NEURITE_LENGTH, skeleton_name)) m[seed_objects_name, feature] = total_distance # # Collect the graph information # if self.wants_neuron_graph: trunk_mask = (branching_counts > 0) & (nearby_labels != 0) intensity_image = workspace.image_set.get_image( self.intensity_image_name.value) edge_graph, vertex_graph = self.make_neuron_graph( combined_skel, dlabels, trunk_mask, branch_points & ~trunk_mask, end_points, intensity_image.pixel_data) image_number = workspace.measurements.image_set_number edge_path, vertex_path = self.get_graph_file_paths(m, m.image_number) workspace.interaction_request( self, m.image_number, edge_path, edge_graph, vertex_path, vertex_graph, headless_ok=True) if self.show_window: workspace.display_data.edge_graph = edge_graph workspace.display_data.vertex_graph = vertex_graph workspace.display_data.intensity_image = intensity_image.pixel_data # # Make the display image # if self.show_window or self.wants_branchpoint_image: branchpoint_image = np.zeros((skeleton.shape[0], skeleton.shape[1], 3)) trunk_mask = (branching_counts > 0) & (nearby_labels != 0) branch_mask = branch_points & (outside_labels != 0) end_mask = end_points & (outside_labels != 0) branchpoint_image[outside_skel, :] = 1 branchpoint_image[trunk_mask | branch_mask | end_mask, :] = 0 branchpoint_image[trunk_mask, 0] = 1 branchpoint_image[branch_mask, 1] = 1 branchpoint_image[end_mask, 2] = 1 branchpoint_image[dilated_labels != 0, :] *= .875 branchpoint_image[dilated_labels != 0, :] += .1 if self.show_window: workspace.display_data.branchpoint_image = branchpoint_image if self.wants_branchpoint_image: bi = cpi.Image(branchpoint_image, parent_image=skeleton_image) workspace.image_set.add(self.branchpoint_image_name.value, bi)
def run(self, workspace): '''Run the module on the image set''' seed_objects_name = self.seed_objects_name.value skeleton_name = self.image_name.value seed_objects = workspace.object_set.get_objects(seed_objects_name) labels = seed_objects.segmented labels_count = np.max(labels) label_range = np.arange(labels_count, dtype=np.int32) + 1 skeleton_image = workspace.image_set.get_image(skeleton_name, must_be_binary=True) skeleton = skeleton_image.pixel_data if skeleton_image.has_mask: skeleton = skeleton & skeleton_image.mask try: labels = skeleton_image.crop_image_similarly(labels) except: labels, m1 = cpo.size_similarly(skeleton, labels) labels[~m1] = 0 # # The following code makes a ring around the seed objects with # the skeleton trunks sticking out of it. # # Create a new skeleton with holes at the seed objects # First combine the seed objects with the skeleton so # that the skeleton trunks come out of the seed objects. # # Erode the labels once so that all of the trunk branchpoints # will be within the labels # # # Dilate the objects, then subtract them to make a ring # my_disk = morph.strel_disk(1.5).astype(int) dilated_labels = grey_dilation(labels, footprint=my_disk) seed_mask = dilated_labels > 0 combined_skel = skeleton | seed_mask closed_labels = grey_erosion(dilated_labels, footprint=my_disk) seed_center = closed_labels > 0 combined_skel = combined_skel & (~seed_center) # # Fill in single holes (but not a one-pixel hole made by # a one-pixel image) # if self.wants_to_fill_holes: def size_fn(area, is_object): return (~is_object) and (area <= self.maximum_hole_size.value) combined_skel = morph.fill_labeled_holes(combined_skel, ~seed_center, size_fn) # # Reskeletonize to make true branchpoints at the ring boundaries # combined_skel = morph.skeletonize(combined_skel) # # The skeleton outside of the labels # outside_skel = combined_skel & (dilated_labels == 0) # # Associate all skeleton points with seed objects # dlabels, distance_map = propagate.propagate(np.zeros(labels.shape), dilated_labels, combined_skel, 1) # # Get rid of any branchpoints not connected to seeds # combined_skel[dlabels == 0] = False # # Find the branchpoints # branch_points = morph.branchpoints(combined_skel) # # Odd case: when four branches meet like this, branchpoints are not # assigned because they are arbitrary. So assign them. # # . . # B. # .B # . . # odd_case = (combined_skel[:-1, :-1] & combined_skel[1:, :-1] & combined_skel[:-1, 1:] & combined_skel[1, 1]) branch_points[:-1, :-1][odd_case] = True branch_points[1:, 1:][odd_case] = True # # Find the branching counts for the trunks (# of extra branches # emanating from a point other than the line it might be on). # branching_counts = morph.branchings(combined_skel) branching_counts = np.array([0, 0, 0, 1, 2])[branching_counts] # # Only take branches within 1 of the outside skeleton # dilated_skel = scind.binary_dilation(outside_skel, morph.eight_connect) branching_counts[~dilated_skel] = 0 # # Find the endpoints # end_points = morph.endpoints(combined_skel) # # We use two ranges for classification here: # * anything within one pixel of the dilated image is a trunk # * anything outside of that range is a branch # nearby_labels = dlabels.copy() nearby_labels[distance_map > 1.5] = 0 outside_labels = dlabels.copy() outside_labels[nearby_labels > 0] = 0 # # The trunks are the branchpoints that lie within one pixel of # the dilated image. # if labels_count > 0: trunk_counts = fix( scind.sum(branching_counts, nearby_labels, label_range)).astype(int) else: trunk_counts = np.zeros((0, ), int) # # The branches are the branchpoints that lie outside the seed objects # if labels_count > 0: branch_counts = fix( scind.sum(branch_points, outside_labels, label_range)) else: branch_counts = np.zeros((0, ), int) # # Save the endpoints # if labels_count > 0: end_counts = fix(scind.sum(end_points, outside_labels, label_range)) else: end_counts = np.zeros((0, ), int) # # Calculate the distances # total_distance = morph.skeleton_length(dlabels * outside_skel, label_range) # # Save measurements # m = workspace.measurements assert isinstance(m, cpmeas.Measurements) feature = "_".join((C_OBJSKELETON, F_NUMBER_TRUNKS, skeleton_name)) m.add_measurement(seed_objects_name, feature, trunk_counts) feature = "_".join( (C_OBJSKELETON, F_NUMBER_NON_TRUNK_BRANCHES, skeleton_name)) m.add_measurement(seed_objects_name, feature, branch_counts) feature = "_".join( (C_OBJSKELETON, F_NUMBER_BRANCH_ENDS, skeleton_name)) m.add_measurement(seed_objects_name, feature, end_counts) feature = "_".join( (C_OBJSKELETON, F_TOTAL_OBJSKELETON_LENGTH, skeleton_name)) m[seed_objects_name, feature] = total_distance # # Collect the graph information # if self.wants_objskeleton_graph: trunk_mask = (branching_counts > 0) & (nearby_labels != 0) intensity_image = workspace.image_set.get_image( self.intensity_image_name.value) edge_graph, vertex_graph = self.make_objskeleton_graph( combined_skel, dlabels, trunk_mask, branch_points & ~trunk_mask, end_points, intensity_image.pixel_data) image_number = workspace.measurements.image_set_number edge_path, vertex_path = self.get_graph_file_paths( m, m.image_number) workspace.interaction_request(self, m.image_number, edge_path, edge_graph, vertex_path, vertex_graph, headless_ok=True) if self.show_window: workspace.display_data.edge_graph = edge_graph workspace.display_data.vertex_graph = vertex_graph workspace.display_data.intensity_image = intensity_image.pixel_data # # Make the display image # if self.show_window or self.wants_branchpoint_image: branchpoint_image = np.zeros( (skeleton.shape[0], skeleton.shape[1], 3)) trunk_mask = (branching_counts > 0) & (nearby_labels != 0) branch_mask = branch_points & (outside_labels != 0) end_mask = end_points & (outside_labels != 0) branchpoint_image[outside_skel, :] = 1 branchpoint_image[trunk_mask | branch_mask | end_mask, :] = 0 branchpoint_image[trunk_mask, 0] = 1 branchpoint_image[branch_mask, 1] = 1 branchpoint_image[end_mask, 2] = 1 branchpoint_image[dilated_labels != 0, :] *= .875 branchpoint_image[dilated_labels != 0, :] += .1 if self.show_window: workspace.display_data.branchpoint_image = branchpoint_image if self.wants_branchpoint_image: bi = cpi.Image(branchpoint_image, parent_image=skeleton_image) workspace.image_set.add(self.branchpoint_image_name.value, bi)