var_all1, lon_all1, lat_all1, sza_all1 = \ ceres.read_day_of_ssf_files( path='/Users/rcscott2/Desktop/CRS/ASDC_archive/SSF_Ed4A/', file_struc='CER_SSF_Terra-FM1-MODIS_Edition4A_404405.2019010' + str(day+1), variable='CERES LW TOA flux - upwards', index=-1, fill=True) # computes var_all2 minus var_all1 diff, fov_wgt = ceres.swath_difference(field2=var_all2, field1=var_all1, day=True, sza=sza_all2, lat=lat_all2) diff_colormap = ceres.set_colormap(cmap_name=Balance_20, typ_arg=0) cf_colormap = ceres.set_colormap(cmap_name=Davos_3_r, typ_arg=0) # ceres.plot_swath( # lon=lon_all2, lat=lat_all2, field=fov_wgt, # nrows=1, ncols=1, cen_lon=0, # varname='FOV cos(latitude)', # levname='', varunits='', # cmap=diff_colormap, cmap_lims=(0, 1), # date='2019010' + str(day + 1), date_str='01/0' + str(day + 1) + '/2019:00-23h', # nightshade=False, # title_str='', # marker='o', msize=1) # ceres.plot_swath( # lon=lon_all2, lat=lat_all2, field=cf_lo,
print('============================================') print('\t\t\tComputing difference...\t\t\t') print('============================================') difference, _ = ceres.swath_difference(field2=field2, field1=field1, day=-1, sza=sza, lat=lat) print('============================================') print('\t\t\tSetting colormap...\t\t\t') print('============================================') colormap = ceres.set_colormap(cmap_name=Balance_20, typ_arg=0) colormap1 = ceres.set_colormap(cmap_name=LaPaz_20, typ_arg=0) print('============================================') print('\t\t\tPlotting data...\t\t\t') print('============================================') title_str = 'CERES ' + ceres.get_platform(file1) + ' CRS Ed2G' cen_lon = 180 ceres.plot_swath(lon=lon, lat=lat, field=field1, nrows=1, ncols=1, cen_lon=cen_lon,
print(spec_sw_tot.shape) spec_lw_tot, spec_lw_tot_name, spec_lw_tot_units, spec_lw_tot_lev, =\ ceres.read_crs_var_dev(file_path=file_path, var_name='Spectral LW surface flux - downward - total sky', lev_arg=-1, fill=True) print(spec_lw_tot.shape) print('============================================') print('\tPlotting Data...\t\t\t') print('============================================') # Cloud fraction colormap cf_colormap = ceres.set_colormap(cmap_name=Devon_20, typ_arg=0) # SW colormap - nice options = LaJolla_20_r, Nuuk_20 sw_colormap = ceres.set_colormap(cmap_name=LaPaz_20, typ_arg=0) # LW colormap - nice options = Deep_20_r, Thermal_20, Bilbao_20 lw_colormap = ceres.set_colormap(cmap_name=LaJolla_20, typ_arg=0) # Flux difference colormap fd_colormap = ceres.set_colormap(cmap_name=Balance_20, typ_arg=0) # title = platform + ' - Cloud Radiative Swath (CRS) Development' title = 'Terra FM1 - Cloud Radiative Swath (CRS) Development' # Clouds # ceres.plot_swath(lon=lon, lat=lat, field=cld_frac_tot, nrows=1, ncols=1, cen_lon=0, # varname=cld_frac_name, levname='', varunits=cld_frac_units,
path = '/Users/rcscott2/Desktop/CERES/EBAF/' file = 'CERES_EBAF-TOA_Ed4.1_Subset_200003-201910.nc' file_path = path + file # ======================================================================== # ------------------------------------------------------- # print information about the nc file # ------------------------------------------------------- ceres.print_nc_file_info(file_path) # ------------------------------------------------------- # set the colormap # ------------------------------------------------------- cmap = ceres.set_colormap(Balance_20, 0) # ------------------------------------------------------- # read latitude and longitude information from file # ------------------------------------------------------- latitude, longitude, lat, lon, time = ceres.read_ebaf_geolocation( file_path=file_path) start_mo, start_yr = ceres.read_ebaf_start_month_year(file_path=file_path) # ------------------------------------------------------- # read variables including their name and units # ------------------------------------------------------- lwf, lwf_name, lwf_units = ceres.read_ebaf_var(file_path=file_path,
fill=True) # CERES Ed4 CRS data # var_all4, lon_all4, lat_all4, sza_all4 = ceres.read_day_of_crs_files( # path='/Users/rcscott2/Desktop/CRS/my_output/JAN-2019_/', # file_struc='CER_CRS4_Terra-FM1-MODIS_GH4_1111TH.20190101', # variable='Shortwave flux - upward - total sky', # lev_arg=0, # fill=True) # Grid and average footprints into 1 deg x 1 deg grid boxes gridded_var_all4 = ceres.grid_to_1x1_deg_equal_angle(lat_all4, lon_all4, var_all4) # select colormap cmap = ceres.set_colormap(Thermal_20, 0) # plot the gridded field ceres.global_map(lon=lon, lat=lat, field=gridded_var_all4, varname='CERES LW TOA flux - upwards', varunits=r'W m$^{-2}$', nrows=1, ncols=1, cen_lon=0, cmap=cmap, cmap_lims=(150, 350), ti_str='CERES Terra FM1 "CRS1deg" JAN-01-2019') plt.imshow(gridded_var_all4) plt.colorbar() plt.clim(vmin=150, vmax=350) plt.show()
# convert list(str) of lat/lon to np arrays val_site_lats = np.asarray(val_site_lats, dtype=np.float) val_site_lons = np.asarray(val_site_lons, dtype=np.float) val_site_type = np.asarray(val_site_type, dtype=np.int) # create a list of tuples containing site lat, lon, & name sites = list(zip(val_site_name, val_site_lats, val_site_lons, val_site_type)) # convert to list of lists sites = [list(el) for el in sites] # construct an output file for each site, add to "sites" list of lists for i, site in enumerate(sites): file = site[0] + '_' + prod + '_' + satellite + '_' + date + '.txt' sites[i].append(file) cmap = ceres.set_colormap(Bold_6, typ_arg=1) ceres.validation_sites(lon=val_site_lons, lat=val_site_lats, type_ids=val_site_type, title_str='CERES CAVE Surface Validation Sites', date_str='', cmap=cmap) # sys.exit() # read in full month of CRS data fov_lon, fov_lat, fov_tim, fov_sza, fov_swd, fov_lwd, fov_cf1, fov_cf2 = \ ceres.read_crs_files_validation( path='/Users/rcscott2/Desktop/CRS/my_output/JAN-2019_/', file_struc='CER_CRS4_Terra-FM1-MODIS_GH4_1111TH.201901')
var_all1[i] = np.nan var_all2[i] = np.nan # ignore/remove NaNs bad_indices = np.isnan(diff) good_indices = ~bad_indices lat_all1 = lat_all1[good_indices] lon_all1 = lon_all1[good_indices] lat_all2 = lat_all2[good_indices] lon_all2 = lon_all2[good_indices] var_all1 = var_all1[good_indices] var_all2 = var_all2[good_indices] sza_all1 = sza_all1[good_indices] diff = diff[good_indices] diff_colormap = ceres.set_colormap(cmap_name=Acton_20, typ_arg=1) ceres.plot_swath( lon=lon_all2, lat=lat_all2, field=var_all2, nrows=1, ncols=1, cen_lon=0, varname='Snow/Ice percent coverage clear-sky overhead-sun vis albedo', levname='', varunits='%', cmap=diff_colormap, cmap_lims=(0, 100), date='20190101', date_str='01/01/2019:00-22h',
gridded_field, grid_lon, grid_lat = \ ceres.grid_to_equal_angle_grid( grid_res_lat=0.5, grid_res_lon=0.5, variable=terra_var_all, lon_data=terra_lon_all, lat_data=terra_lat_all, lon_360=True) # Plot fluxes below a certain threshold # gridded_field[gridded_field > 180] = np.nan date_str = mo + '/' + day + '/2020:' + hr + 'h' # set colormap cmap = ceres.set_colormap(Deep_20_r, 0) # cmap = 'viridis' # ceres.plot_gridded_fields( nrows=1, ncols=1, cen_lon=0, date_str='', title_str=['FLASHFlux v3C Aqua FM3 - ' + date_str], cmap=cmap, cmap_lims=((0, 700), (0, 700)), varname='Reflected Shortwave Radiation', levname='TOA', varunits=r'W m$^{-2}$', lon=grid_lon, lat=grid_lat,
diff = diff[good_indices] print('Length of SZA, VZA, diff:') print(len(sza_all3)) print(len(vza_all3)) print(len(diff)) print('Length of lon, lat:') print(len(lon_all3)) print(len(lat_all3)) print('============================================') print('\t\t\tPlotting swaths...\t\t\t') print('============================================') diff_colormap = ceres.set_colormap(cmap_name=Balance_20, typ_arg=0) ceres.plot_swath(lon=lon_all3, lat=lat_all3, field=sza_all3, nrows=1, ncols=1, cen_lon=0, varname='CERES solar zenith angle', levname='surface', varunits='degrees', cmap=diff_colormap, cmap_lims=(0, 90), date='20190101', date_str='01/01/2019:00-22h', nightshade=False,