예제 #1
0
def write_calibration(camera, model, fit, group=0, suffix='', station=None):
    # model.set_cameras(fit.params)
    i = model.group_indices[group][0]
    # Save means
    means = [item.value for item in fit.params.values()]
    model.set_cameras(means)
    # (fmm, cmm, k, p, sensorsz)
    model.cams[i].write(path=os.path.join('cameras',
                                          camera + suffix + '.json'),
                        attributes=('fmm', 'cmm', 'k', 'p', 'sensorsz'),
                        indent=4,
                        flat_arrays=True)
    # (xyz)
    if station:
        xyz0 = cg.load_calibrations(station_estimate=station,
                                    merge=True)['xyz']
        print('xyz deviation:', model.cams[i].xyz - xyz0)
        model.cams[i].write(path=os.path.join('stations',
                                              station + suffix + '.json'),
                            attributes=['xyz'],
                            indent=4,
                            flat_arrays=True)
    # Save standard errors
    stderrs = [item.stderr for item in fit.params.values()]
    if fit.errorbars:
        model.set_cameras(stderrs)
        # (fmm, cmm, k, p)
        model.cams[i].write(path=os.path.join('cameras', camera + suffix +
                                              '_stderr.json'),
                            attributes=('fmm', 'cmm', 'k', 'p'),
                            indent=4,
                            flat_arrays=True)
        # (xyz)
        if station:
            model.cams[i].write(path=os.path.join(
                'stations', station + suffix + '_stderr.json'),
                                attributes=['xyz'],
                                indent=4,
                                flat_arrays=True)
    model.reset_cameras()
예제 #2
0
# ---- Load DEM interpolant ----

dem_interpolant = glimpse.helpers.read_pickle(dem_interpolant_path)
dem_padding = 200 # m

# ---- Track points ----

for i_obs in range(0, len(observer_json)):
    # ---- Load observers ----
    # observers
    observers = []
    for station, basenames in observer_json[i_obs].items():
        meta = cg.parse_image_path(basenames[0], sequence=True)
        service_calibration = cg.load_calibrations(
            station_estimate=meta['station'], station=meta['station'],
            camera=meta['camera'], merge=True, file_errors=False)
        datetimes = cg.paths_to_datetimes(basenames)
        # Use dummy Exif for speed
        service_exif = glimpse.Exif(cg.find_image(basenames[0]))
        images = []
        for basename, t in zip(basenames, datetimes):
            calibration = glimpse.helpers.merge_dicts(service_calibration,
                cg.load_calibrations(image=basename, viewdir=basename, merge=True,
                file_errors=False))
            path = cg.find_image(basename)
            image = glimpse.Image(path, cam=calibration, datetime=t, exif=service_exif)
            images.append(image)
        # NOTE: Determine sigma programmatically?
        observer = glimpse.Observer(images, cache=True, correction=True, sigma=0.3)
        observers.append(observer)
예제 #3
0
# ---- Constants ---- #

STATION = 'AK10b'
DEM_PATH = '/volumes/science-b/data/columbia/_new/ifsar/hae.tif'
DEM_ZLIM = (1, np.inf)
DDEG = 0.05

# --- Load DEM ---- #

dem = glimpse.Raster.read(DEM_PATH)
dem.crop(zlim=DEM_ZLIM)

# --- Compute horizon ---- #

eop = cg.load_calibrations(station_estimate=STATION, merge=True)
# Stamp null circle into DEM around camera
dem.fill_circle(center=eop['xyz'], radius=100)
# Sample horizon in swath in front of camera
heading = eop['viewdir'][0]
headings = np.arange(heading - 90, heading + 90, step=DDEG)
# headings = np.arange(0, 360, step=DDEG) # AK12 only
hxyz = dem.horizon(eop['xyz'], headings)

# --- Format and save GeoJSON ---- #

geo = geojson.FeatureCollection([
    geojson.Feature(geometry=geojson.LineString(xyz.tolist())) for xyz in hxyz
])
geo = glimpse.helpers.ordered_geojson(geo)
glimpse.helpers.write_geojson(geo,
예제 #4
0
ortho_paths = glob.glob(os.path.join(root, 'ortho', '*.tif'))
ortho_paths += glob.glob(os.path.join(root, 'ortho-ifsar', 'data', '*.tif'))
ortho_dates = [datetime.datetime.strptime(re.findall(r'([0-9]{8})', path)[0], '%Y%m%d')
    for path in ortho_paths]

# ---- Control synths (ideal camera) ----

for image in images:
    print(image)
    start = timeit.default_timer()
    basename = os.path.join('svg-synth', image)
    if os.path.isfile(basename + '-synth.JPG'):
        continue
    # Load image
    img_path = cg.find_image(image)
    cam_args = cg.load_calibrations(image,
        station_estimate=True, station=True, merge=True, file_errors=False)
    img = glimpse.Image(img_path, cam=cam_args)
    img.cam.resize(img_size)
    # Select nearest dem and ortho
    img_date = datetime.datetime.strptime(cg.parse_image_path(image)['date_str'], '%Y%m%d')
    i_dem = np.argmin(np.abs(np.asarray(dem_dates) - img_date))
    i_ortho = np.argmin(np.abs(np.asarray(ortho_dates) - img_date))
    dem_path = dem_paths[i_dem]
    ortho_path = ortho_paths[i_ortho]
    # Load raster metadata
    dem_grid = glimpse.Grid.read(dem_path, d=grid_size)
    ortho_grid = glimpse.Grid.read(ortho_path, d=grid_size)
    # Intersect bounding boxes
    cam_box = img.cam.viewbox(50e3)[[0, 1, 3, 4]]
    box = glimpse.helpers.intersect_boxes(np.row_stack((
        cam_box, dem_grid.box2d, ortho_grid.box2d)))
예제 #5
0
    errors = (1 / scale) * np.linalg.norm(m.observed() - m.predicted(), axis=1)
    matplotlib.pyplot.title(
        glimpse.helpers.strip_path(img.path) + ' - ' +
        glimpse.helpers.strip_path(imgB.path) + '\n' +
        str(round(errors.mean(), 2)) + ', ' + str(round(errors.std(), 2)))
    img.set_plot_limits()
    img.cam.resize(1)
    imgB.cam.resize(1)
    m.resize(1)

# ---- Check single image (svg) ---- #

basename = 'AK10b_20120605_203759'
img = glimpse.Image(path=cg.find_image(basename),
                    cam=cg.load_calibrations(basename,
                                             station_estimate=True,
                                             merge=True))
controls = cg.svg_controls(img)
svg_model = glimpse.optimize.Cameras(img.cam,
                                     controls,
                                     cam_params=dict(viewdir=True),
                                     group_params=group_params[-1])
svg_fit = svg_model.fit(full=True, group_params=group_params[:-1])
matplotlib.pyplot.figure()
img.plot()
svg_model.plot(svg_fit.params)
img.set_plot_limits()

# ---- Check undistorted image ---- #

basename = 'AKJNC_20120508_191103C'
예제 #6
0
    if meta['station'] in stations]

for path in paths:
    meta = cg.parse_image_path(path, sequence=True)
    svg_keys = camera_keys.get(meta['camera'], keys)
    for suffix in suffixes:
        if not os.path.isfile(os.path.join(
            'cameras', meta['camera'] + suffix + '.json')):
            continue
        basename = os.path.join('images', meta['basename'] + suffix)
        if os.path.isfile(basename + '.json'):
            continue
        print(meta['basename'] + suffix)
        # TODO: Use station xyz estimated for calib for non-fixed stations
        calibration = cg.load_calibrations(path,
            station_estimate=meta['station'], station=meta['station'],
            camera=meta['camera'] + suffix, merge=True, file_errors=False)
        img_path = cg.find_image(path)
        img = glimpse.Image(img_path, cam=calibration)
        controls = cg.svg_controls(img, keys=svg_keys, step=step)
        controls += cg.synth_controls(img, step=step)
        if not controls:
            print("No controls found")
            continue
        model = glimpse.optimize.Cameras(
            cams=img.cam, controls=controls, cam_params=dict(viewdir=True))
        fit = model.fit(full=True)
        model.set_cameras(fit.params)
        img.cam.write(basename + '.json',
            attributes=('xyz', 'viewdir', 'fmm', 'cmm', 'k', 'p', 'sensorsz'),
            indent=4, flat_arrays=True)
예제 #7
0
]

# ---- Validation synths (calibrated camera) ----

for image in images:
    basename = os.path.join('images', image)
    need = [os.path.isfile(basename + suffix + '.json') for suffix in suffixes]
    missing = [
        not os.path.isfile(basename + suffix + '-synth.JPG')
        for suffix in suffixes
    ]
    if not any(np.logical_and(need, missing)):
        continue
    # Load base image
    img_path = cg.find_image(image)
    calibration = cg.load_calibrations(image=image, merge=True)
    img = glimpse.Image(img_path, cam=calibration)
    path = basename + '.JPG'
    if not os.path.isfile(path):
        bw = glimpse.helpers.rgb_to_gray(img.read()).astype(np.uint8)
        img.write(path=path, I=clahe.apply(bw))
    # Select nearest dem and ortho
    img_date = datetime.datetime.strptime(
        cg.parse_image_path(image)['date_str'], '%Y%m%d')
    i_dem = np.argmin(np.abs(np.asarray(dem_dates) - img_date))
    i_ortho = np.argmin(np.abs(np.asarray(ortho_dates) - img_date))
    dem_path = dem_paths[i_dem]
    ortho_path = ortho_paths[i_ortho]
    # Load raster metadata
    dem_grid = glimpse.Grid.read(dem_path, d=grid_size)
    ortho_grid = glimpse.Grid.read(ortho_path, d=grid_size)
예제 #8
0
cartesian_path = 'points-cartesian'
cylindrical_path = 'points-cylindrical'

# ---- Load first image from each observer station ----
# images

json = glimpse.helpers.read_json('observers.json',
    object_pairs_hook=collections.OrderedDict)
start_images = []
progress = glimpse.helpers._progress_bar(max=len(json))
for observers in json:
    starts = []
    for station, basenames in observers.items():
        ids = cg.parse_image_path(basenames[0], sequence=True)
        cam_args = cg.load_calibrations(station=station, camera=ids['camera'],
            image=basenames[0], viewdir=basenames[0], merge=True,
            file_errors=False)
        path = cg.find_image(basenames[0])
        starts.append(glimpse.Image(path, cam=cam_args))
    start_images.append(tuple(starts))
    progress.next()

# ---- Load DEM interpolant ----

dem_interpolant = glimpse.helpers.read_pickle(dem_interpolant_path)

# ---- Load canonical velocities (cartesian) ----
# vx, vx_sigma, vy, vy_sigma

names = 'vx', 'vx_stderr', 'vy', 'vy_stderr'
vx, vx_sigma, vy, vy_sigma = [glimpse.Raster.read(
예제 #9
0
images = [
    glimpse.helpers.strip_path(path)
    for path in glob.glob(os.path.join('svg-synth', '*.svg'))
]
for image in images:
    basename = os.path.join(cg.CG_PATH, 'svg-synth', image)
    # Skip if output exists
    if os.path.isfile(basename + '.png'):
        continue
    print(image)
    # Prepare image
    cam = cg.load_calibrations(image,
                               station=True,
                               camera=True,
                               image=True,
                               viewdir=True,
                               merge=True,
                               file_errors=False)
    img = glimpse.Image(basename + '.JPG', cam=cam)
    I = img.read()
    if I.ndim > 2:
        I = glimpse.helpers.rgb_to_gray(I).astype(np.uint8)
    # Prepare synthetic image
    cam = glimpse.helpers.read_json(basename + '-synth.json')
    simg = glimpse.Image(basename + '-synth.JPG', cam=cam)
    sI = simg.read()
    if sI.ndim > 2:
        smask = (sI[:, :, 0] != 127).astype(np.uint8)
        sI = glimpse.helpers.rgb_to_gray(sI).astype(np.uint8)
    else: