def launch_analysis(): engine = Engine(animals.values.astype(float), num_states=64, cctypes=['categorical'] * len(animals.values[0]), distargs=[{ 'k': 2 }] * len(animals.values[0]), rng=gu.gen_rng(7)) engine.transition(N=900) with open('resources/animals/animals.engine', 'w') as f: engine.to_pickle(f) engine = Engine.from_pickle(open('resources/animals/animals.engine', 'r')) D = engine.dependence_probability_pairwise() pu.plot_clustermap(D)
def create_engine(dist, noise, num_samples, num_states, timestamp): T = simulate_dataset(dist, noise, num_samples) print 'Creating engine (%s %1.2f) ...' % (dist, noise) engine = Engine(T, cctypes=['normal','normal'], num_states=num_states) engine.to_pickle(file(filename_engine(dist, noise, timestamp), 'w'))