예제 #1
0
파일: test_ch.py 프로젝트: MPI-IS/chumpy
    def test_sum_mean_std_var(self):
        for fn in [ch.sum, ch.mean,ch.var, ch.std]:
            
            # Create fake input and differences in input space
            data1 = ch.ones((3,4,7,2))
            data2 = ch.array(data1.r + .1 * np.random.rand(data1.size).reshape(data1.shape))
            diff = data2.r - data1.r

            # Compute outputs
            result1 = fn(data1, axis=2)
            result2 = fn(data2, axis=2)

            # Empirical and predicted derivatives
            gt = result2.r - result1.r
            pred = result1.dr_wrt(data1).dot(diff.ravel()).reshape(gt.shape)
            
            #print np.max(np.abs(gt - pred))
            
            if fn in [ch.std, ch.var]:
                self.assertTrue(1e-2 > np.max(np.abs(gt - pred)))        
            else:
                self.assertTrue(1e-14 > np.max(np.abs(gt - pred)))        
                # test caching
                dr0 = result1.dr_wrt(data1)
                data1[:] = np.random.randn(data1.size).reshape(data1.shape)
                self.assertTrue(result1.dr_wrt(data1) is dr0) # changing values shouldn't force recompute
                result1.axis=1
                self.assertTrue(result1.dr_wrt(data1) is not dr0)
            
        self.assertEqual(ch.mean(ch.eye(3),axis=1).ndim, np.mean(np.eye(3),axis=1).ndim)
        self.assertEqual(ch.mean(ch.eye(3),axis=0).ndim, np.mean(np.eye(3),axis=0).ndim)
        self.assertEqual(ch.sum(ch.eye(3),axis=1).ndim, np.sum(np.eye(3),axis=1).ndim)
        self.assertEqual(ch.sum(ch.eye(3),axis=0).ndim, np.sum(np.eye(3),axis=0).ndim)
예제 #2
0
    def test_sum_mean_std_var(self):
        for fn in [ch.sum, ch.mean, ch.var, ch.std]:

            # Create fake input and differences in input space
            data1 = ch.ones((3,4,7,2))
            data2 = ch.array(data1.r + .1 * np.random.rand(data1.size).reshape(data1.shape))
            diff = data2.r - data1.r

            # Compute outputs
            result1 = fn(data1, axis=2)
            result2 = fn(data2, axis=2)

            # Empirical and predicted derivatives
            gt = result2.r - result1.r
            pred = result1.dr_wrt(data1).dot(diff.ravel()).reshape(gt.shape)

            #print np.max(np.abs(gt - pred))

            if fn in [ch.std, ch.var]:
                self.assertTrue(1e-2 > np.max(np.abs(gt - pred)))
            else:
                self.assertTrue(1e-14 > np.max(np.abs(gt - pred)))
                # test caching
                dr0 = result1.dr_wrt(data1)
                data1[:] = np.random.randn(data1.size).reshape(data1.shape)
                self.assertTrue(result1.dr_wrt(data1) is dr0) # changing values shouldn't force recompute
                result1.axis=1
                self.assertTrue(result1.dr_wrt(data1) is not dr0)

        self.assertEqual(ch.mean(ch.eye(3),axis=1).ndim, np.mean(np.eye(3),axis=1).ndim)
        self.assertEqual(ch.mean(ch.eye(3),axis=0).ndim, np.mean(np.eye(3),axis=0).ndim)
        self.assertEqual(ch.sum(ch.eye(3),axis=1).ndim, np.sum(np.eye(3),axis=1).ndim)
        self.assertEqual(ch.sum(ch.eye(3),axis=0).ndim, np.sum(np.eye(3),axis=0).ndim)
예제 #3
0
파일: linalg.py 프로젝트: pujades/chumpy
def lstsq(a, b, rcond=-1):
    if rcond != -1:
        raise Exception('non-default rcond not yet implemented')
        
    x = Ch(lambda a, b : pinv(a).dot(b))
    x.a = a
    x.b = b
    residuals = ch.sum(  (x.a.dot(x) - x.b) **2 , axis=0)
    rank = NotImplementedError
    s = NotImplementedError
    
    return x, residuals, rank, s
예제 #4
0
파일: linalg.py 프로젝트: pujades/chumpy
def norm(x, ord=None, axis=None):
    if ord is not None or axis is not None:
        raise NotImplementedError("'ord' and 'axis' should be None for now.")

    return ch.sqrt(ch.sum(x**2))