예제 #1
0
def search_extended_timing_solutions(timing_files, timestamp):

    # Load the timing correction
    nfiles = len(timing_files)
    tstart = np.zeros(nfiles, dtype=np.float32)
    tstop = np.zeros(nfiles, dtype=np.float32)
    all_tcorr = []

    for ff, filename in enumerate(timing_files):

        kwargs = {}
        with h5py.File(filename, 'r') as handler:

            for key in ['tau', 'avg_phase', 'noise_source', 'time']:

                kwargs[key] = handler[key][:]

        tcorr = timing.TimingCorrection(**kwargs)

        all_tcorr.append(tcorr)
        tstart[ff] = tcorr.time[0]
        tstop[ff] = tcorr.time[-1]

    # Map timestamp to a timing correction object
    imatch = np.flatnonzero((timestamp >= tstart) & (timestamp <= tstop))

    if imatch.size > 1:
        ValueError("Timing corrections overlap!")
    elif imatch.size < 1:
        ValueError("No timing correction for transit on %s (CSD %d)" %
                   (ephemeris.unix_to_datetime(timestamp).strftime("%Y-%m-%d"),
                    ephemeris.unix_to_csd(timestamp)))

    return all_tcorr[imatch[0]]
예제 #2
0
 def _flags_mask(self, index_map_ra):
     if self._cache_flags:
         flag_time_spans = get_flags_cached(self.flags,
                                            self._cache_reset_time)
     else:
         flag_time_spans = get_flags(
             self.flags,
             csd_to_unix(self.lsd.lsd),
             csd_to_unix(self.lsd.lsd + 1),
         )
     csd_arr = self.lsd.lsd + index_map_ra / 360.0
     flag_mask = np.zeros_like(csd_arr, dtype=np.bool)
     for type_, ca, cb in flag_time_spans:
         flag_mask[(csd_arr > unix_to_csd(ca))
                   & (csd_arr < unix_to_csd(cb))] = True
     return flag_mask[:, np.newaxis]
예제 #3
0
def csds_in_range(start, end, step=1):
    """Get the CSDs within a time range.

    The start and end parameters must either be strings of the form "CSD\d+"
    (i.e. CSD followed by an int), which specifies an exact CSD start, or a
    form that `ephemeris.ensure_unix` understands.

    Parameters
    ----------
    start : str or parseable to datetime
        Start of interval.
    end : str or parseable to datetime
        End of interval. If `None` use now. Note that for CSD intervals the
        end is *inclusive* (unlike a `range`).

    Returns
    -------
    csds : list of ints
    """

    if end is None:
        end = datetime.datetime.utcnow()

    if start.startswith("CSD"):
        start_csd = int(start[3:])
    else:
        start_csd = ephemeris.unix_to_csd(ephemeris.ensure_unix(start))
        start_csd = math.floor(start_csd)

    if end.startswith("CSD"):
        end_csd = int(end[3:])
    else:
        end_csd = ephemeris.unix_to_csd(ephemeris.ensure_unix(end))
        end_csd = math.ceil(end_csd)

    csds = [day for day in range(start_csd, end_csd + 1, step)]
    return csds
예제 #4
0
 def from_date(cls, date: datetime.date):
     unix = time.mktime(date.timetuple())
     lsd = int(unix_to_csd(unix))
     day = cls(lsd, date)
     return day
예제 #5
0
def offline_point_source_calibration(file_list,
                                     source,
                                     inputmap=None,
                                     start=None,
                                     stop=None,
                                     physical_freq=None,
                                     tcorr=None,
                                     logging_params=DEFAULT_LOGGING,
                                     **kwargs):
    # Load config
    config = DEFAULTS.deepcopy()
    config.merge(NameSpace(kwargs))

    # Setup logging
    log.setup_logging(logging_params)
    mlog = log.get_logger(__name__)

    mlog.info("ephemeris file: %s" % ephemeris.__file__)

    # Set the model to use
    fitter_function = utils.fit_point_source_transit
    model_function = utils.model_point_source_transit

    farg = inspect.getargspec(fitter_function)
    defaults = {
        key: val
        for key, val in zip(farg.args[-len(farg.defaults):], farg.defaults)
    }
    poly_deg_amp = kwargs.get('poly_deg_amp', defaults['poly_deg_amp'])
    poly_deg_phi = kwargs.get('poly_deg_phi', defaults['poly_deg_phi'])
    poly_type = kwargs.get('poly_type', defaults['poly_type'])

    param_name = ([
        '%s_poly_amp_coeff%d' % (poly_type, cc)
        for cc in range(poly_deg_amp + 1)
    ] + [
        '%s_poly_phi_coeff%d' % (poly_type, cc)
        for cc in range(poly_deg_phi + 1)
    ])

    model_kwargs = [('poly_deg_amp', poly_deg_amp),
                    ('poly_deg_phi', poly_deg_phi), ('poly_type', poly_type)]
    model_name = '.'.join(
        [getattr(model_function, key) for key in ['__module__', '__name__']])

    tval = {}

    # Set where to evaluate gain
    ha_eval_str = ['raw_transit']

    if config.multi_sample:
        ha_eval_str += ['transit', 'peak']
        ha_eval = [0.0, None]
        fitslc = slice(1, 3)

    ind_eval = ha_eval_str.index(config.evaluate_gain_at)

    # Determine dimensions
    direction = ['amp', 'phi']
    nparam = len(param_name)
    ngain = len(ha_eval_str)
    ndir = len(direction)

    # Determine frequencies
    data = andata.CorrData.from_acq_h5(file_list,
                                       datasets=(),
                                       start=start,
                                       stop=stop)
    freq = data.freq

    if physical_freq is not None:
        index_freq = np.array(
            [np.argmin(np.abs(ff - freq)) for ff in physical_freq])
        freq_sel = utils.convert_to_slice(index_freq)
        freq = freq[index_freq]
    else:
        index_freq = np.arange(freq.size)
        freq_sel = None

    nfreq = freq.size

    # Compute flux of source
    inv_rt_flux_density = tools.invert_no_zero(
        np.sqrt(FluxCatalog[source].predict_flux(freq)))

    # Read in the eigenvaluess for all frequencies
    data = andata.CorrData.from_acq_h5(file_list,
                                       datasets=['erms', 'eval'],
                                       freq_sel=freq_sel,
                                       start=start,
                                       stop=stop)

    # Determine source coordinates
    this_csd = np.floor(ephemeris.unix_to_csd(np.median(data.time)))
    timestamp0 = ephemeris.transit_times(FluxCatalog[source].skyfield,
                                         ephemeris.csd_to_unix(this_csd))[0]
    src_ra, src_dec = ephemeris.object_coords(FluxCatalog[source].skyfield,
                                              date=timestamp0,
                                              deg=True)

    ra = ephemeris.lsa(data.time)
    ha = ra - src_ra
    ha = ha - (ha > 180.0) * 360.0 + (ha < -180.0) * 360.0
    ha = np.radians(ha)

    itrans = np.argmin(np.abs(ha))

    window = 0.75 * np.max(np.abs(ha))

    off_source = np.abs(ha) > window

    mlog.info("CSD %d" % this_csd)
    mlog.info("Hour angle at transit (%d of %d):  %0.2f deg   " %
              (itrans, len(ha), np.degrees(ha[itrans])))
    mlog.info("Hour angle off source: %0.2f deg" %
              np.median(np.abs(np.degrees(ha[off_source]))))

    src_dec = np.radians(src_dec)
    lat = np.radians(ephemeris.CHIMELATITUDE)

    # Determine division of frequencies
    ninput = data.ninput
    ntime = data.ntime
    nblock_freq = int(np.ceil(nfreq / float(config.nfreq_per_block)))

    # Determine bad inputs
    eps = 10.0 * np.finfo(data['erms'].dtype).eps
    good_freq = np.flatnonzero(np.all(data['erms'][:] > eps, axis=-1))
    ind_sub_freq = good_freq[slice(0, good_freq.size,
                                   max(int(good_freq.size / 10), 1))]

    tmp_data = andata.CorrData.from_acq_h5(file_list,
                                           datasets=['evec'],
                                           freq_sel=ind_sub_freq,
                                           start=start,
                                           stop=stop)
    eps = 10.0 * np.finfo(tmp_data['evec'].dtype).eps
    bad_input = np.flatnonzero(
        np.all(np.abs(tmp_data['evec'][:, 0]) < eps, axis=(0, 2)))

    input_axis = tmp_data.input.copy()

    del tmp_data

    # Query layout database for correlator inputs
    if inputmap is None:
        inputmap = tools.get_correlator_inputs(
            datetime.datetime.utcfromtimestamp(data.time[itrans]),
            correlator='chime')

    inputmap = tools.reorder_correlator_inputs(input_axis, inputmap)

    tools.change_chime_location(rotation=config.telescope_rotation)

    # Determine x and y pol index
    xfeeds = np.array([
        idf for idf, inp in enumerate(inputmap)
        if (idf not in bad_input) and tools.is_array_x(inp)
    ])
    yfeeds = np.array([
        idf for idf, inp in enumerate(inputmap)
        if (idf not in bad_input) and tools.is_array_y(inp)
    ])

    nfeed = xfeeds.size + yfeeds.size

    pol = [yfeeds, xfeeds]
    polstr = ['Y', 'X']
    npol = len(pol)

    neigen = min(max(npol, config.neigen), data['eval'].shape[1])

    phase_ref = config.phase_reference_index
    phase_ref_by_pol = [
        pol[pp].tolist().index(phase_ref[pp]) for pp in range(npol)
    ]

    # Calculate dynamic range
    eval0_off_source = np.median(data['eval'][:, 0, off_source], axis=-1)

    dyn = data['eval'][:, 1, :] * tools.invert_no_zero(
        eval0_off_source[:, np.newaxis])

    # Determine frequencies to mask
    not_rfi = np.ones((nfreq, 1), dtype=np.bool)
    if config.mask_rfi is not None:
        for frng in config.mask_rfi:
            not_rfi[:, 0] &= ((freq < frng[0]) | (freq > frng[1]))

    mlog.info("%0.1f percent of frequencies available after masking RFI." %
              (100.0 * np.sum(not_rfi, dtype=np.float32) / float(nfreq), ))

    #dyn_flg = utils.contiguous_flag(dyn > config.dyn_rng_threshold, centre=itrans)
    if source in config.dyn_rng_threshold:
        dyn_rng_threshold = config.dyn_rng_threshold[source]
    else:
        dyn_rng_threshold = config.dyn_rng_threshold.default

    mlog.info("Dynamic range threshold set to %0.1f." % dyn_rng_threshold)

    dyn_flg = dyn > dyn_rng_threshold

    # Calculate fit flag
    fit_flag = np.zeros((nfreq, npol, ntime), dtype=np.bool)
    for pp in range(npol):

        mlog.info("Dynamic Range Nsample, Pol %d:  %s" % (pp, ','.join([
            "%d" % xx for xx in np.percentile(np.sum(dyn_flg, axis=-1),
                                              [25, 50, 75, 100])
        ])))

        if config.nsigma1 is None:
            fit_flag[:, pp, :] = dyn_flg & not_rfi

        else:

            fit_window = config.nsigma1 * np.radians(
                utils.get_window(freq, pol=polstr[pp], dec=src_dec, deg=True))

            win_flg = np.abs(ha)[np.newaxis, :] <= fit_window[:, np.newaxis]

            fit_flag[:, pp, :] = (dyn_flg & win_flg & not_rfi)

    # Calculate base error
    base_err = data['erms'][:, np.newaxis, :]

    # Check for sign flips
    ref_resp = andata.CorrData.from_acq_h5(file_list,
                                           datasets=['evec'],
                                           input_sel=config.eigen_reference,
                                           freq_sel=freq_sel,
                                           start=start,
                                           stop=stop)['evec'][:, 0:neigen,
                                                              0, :]

    sign0 = 1.0 - 2.0 * (ref_resp.real < 0.0)

    # Check that we have the correct reference feed
    if np.any(np.abs(ref_resp.imag) > 0.0):
        ValueError("Reference feed %d is incorrect." % config.eigen_reference)

    del ref_resp

    # Save index_map
    results = {}
    results['model'] = model_name
    results['param'] = param_name
    results['freq'] = data.index_map['freq'][:]
    results['input'] = input_axis
    results['eval'] = ha_eval_str
    results['dir'] = direction

    for key, val in model_kwargs:
        results[key] = val

    # Initialize numpy arrays to hold results
    if config.return_response:

        results['response'] = np.zeros((nfreq, ninput, ntime),
                                       dtype=np.complex64)
        results['response_err'] = np.zeros((nfreq, ninput, ntime),
                                           dtype=np.float32)
        results['fit_flag'] = fit_flag
        results['ha_axis'] = ha
        results['ra'] = ra

    else:

        results['gain_eval'] = np.zeros((nfreq, ninput, ngain),
                                        dtype=np.complex64)
        results['weight_eval'] = np.zeros((nfreq, ninput, ngain),
                                          dtype=np.float32)
        results['frac_gain_err'] = np.zeros((nfreq, ninput, ngain, ndir),
                                            dtype=np.float32)

        results['parameter'] = np.zeros((nfreq, ninput, nparam),
                                        dtype=np.float32)
        results['parameter_err'] = np.zeros((nfreq, ninput, nparam),
                                            dtype=np.float32)

        results['index_eval'] = np.full((nfreq, ninput), -1, dtype=np.int8)
        results['gain'] = np.zeros((nfreq, ninput), dtype=np.complex64)
        results['weight'] = np.zeros((nfreq, ninput), dtype=np.float32)

        results['ndof'] = np.zeros((nfreq, ninput, ndir), dtype=np.float32)
        results['chisq'] = np.zeros((nfreq, ninput, ndir), dtype=np.float32)

        results['timing'] = np.zeros((nfreq, ninput), dtype=np.complex64)

    # Initialize metric like variables
    results['runtime'] = np.zeros((nblock_freq, 2), dtype=np.float64)

    # Compute distances
    dist = tools.get_feed_positions(inputmap)
    for pp, feeds in enumerate(pol):
        dist[feeds, :] -= dist[phase_ref[pp], np.newaxis, :]

    # Loop over frequency blocks
    for gg in range(nblock_freq):

        mlog.info("Frequency block %d of %d." % (gg, nblock_freq))

        fstart = gg * config.nfreq_per_block
        fstop = min((gg + 1) * config.nfreq_per_block, nfreq)
        findex = np.arange(fstart, fstop)
        ngroup = findex.size

        freq_sel = utils.convert_to_slice(index_freq[findex])

        timeit_start_gg = time.time()

        #
        if config.return_response:
            gstart = start
            gstop = stop

            tslc = slice(0, ntime)

        else:
            good_times = np.flatnonzero(np.any(fit_flag[findex], axis=(0, 1)))

            if good_times.size == 0:
                continue

            gstart = int(np.min(good_times))
            gstop = int(np.max(good_times)) + 1

            tslc = slice(gstart, gstop)

            gstart += start
            gstop += start

        hag = ha[tslc]
        itrans = np.argmin(np.abs(hag))

        # Load eigenvectors.
        nudata = andata.CorrData.from_acq_h5(
            file_list,
            datasets=['evec', 'vis', 'flags/vis_weight'],
            apply_gain=False,
            freq_sel=freq_sel,
            start=gstart,
            stop=gstop)

        # Save time to load data
        results['runtime'][gg, 0] = time.time() - timeit_start_gg
        timeit_start_gg = time.time()

        mlog.info("Time to load (per frequency):  %0.3f sec" %
                  (results['runtime'][gg, 0] / ngroup, ))

        # Loop over polarizations
        for pp, feeds in enumerate(pol):

            # Get timing correction
            if tcorr is not None:
                tgain = tcorr.get_gain(nudata.freq, nudata.input[feeds],
                                       nudata.time)
                tgain *= tgain[:, phase_ref_by_pol[pp], np.newaxis, :].conj()

                tgain_transit = tgain[:, :, itrans].copy()
                tgain *= tgain_transit[:, :, np.newaxis].conj()

            # Create the polarization masking vector
            P = np.zeros((1, ninput, 1), dtype=np.float64)
            P[:, feeds, :] = 1.0

            # Loop over frequencies
            for gff, ff in enumerate(findex):

                flg = fit_flag[ff, pp, tslc]

                if (2 * int(np.sum(flg))) < (nparam +
                                             1) and not config.return_response:
                    continue

                # Normalize by eigenvalue and correct for pi phase flips in process.
                resp = (nudata['evec'][gff, 0:neigen, :, :] *
                        np.sqrt(data['eval'][ff, 0:neigen, np.newaxis, tslc]) *
                        sign0[ff, :, np.newaxis, tslc])

                # Rotate to single-pol response
                # Move time to first axis for the matrix multiplication
                invL = tools.invert_no_zero(
                    np.rollaxis(data['eval'][ff, 0:neigen, np.newaxis, tslc],
                                -1, 0))

                UT = np.rollaxis(resp, -1, 0)
                U = np.swapaxes(UT, -1, -2)

                mu, vp = np.linalg.eigh(np.matmul(UT.conj(), P * U))

                rsign0 = (1.0 - 2.0 * (vp[:, 0, np.newaxis, :].real < 0.0))

                resp = mu[:, np.newaxis, :] * np.matmul(U, rsign0 * vp * invL)

                # Extract feeds of this pol
                # Transpose so that time is back to last axis
                resp = resp[:, feeds, -1].T

                # Compute error on response
                dataflg = ((nudata.weight[gff, feeds, :] > 0.0)
                           & np.isfinite(nudata.weight[gff, feeds, :])).astype(
                               np.float32)

                resp_err = dataflg * base_err[ff, :, tslc] * np.sqrt(
                    nudata.vis[gff, feeds, :].real) * tools.invert_no_zero(
                        np.sqrt(mu[np.newaxis, :, -1]))

                # Reference to specific input
                resp *= np.exp(
                    -1.0J *
                    np.angle(resp[phase_ref_by_pol[pp], np.newaxis, :]))

                # Apply timing correction
                if tcorr is not None:
                    resp *= tgain[gff]

                    results['timing'][ff, feeds] = tgain_transit[gff]

                # Fringestop
                lmbda = scipy.constants.c * 1e-6 / nudata.freq[gff]

                resp *= tools.fringestop_phase(
                    hag[np.newaxis, :], lat, src_dec,
                    dist[feeds, 0, np.newaxis] / lmbda,
                    dist[feeds, 1, np.newaxis] / lmbda)

                # Normalize by source flux
                resp *= inv_rt_flux_density[ff]
                resp_err *= inv_rt_flux_density[ff]

                # If requested, reference phase to the median value
                if config.med_phase_ref:
                    phi0 = np.angle(resp[:, itrans, np.newaxis])
                    resp *= np.exp(-1.0J * phi0)
                    resp *= np.exp(
                        -1.0J *
                        np.median(np.angle(resp), axis=0, keepdims=True))
                    resp *= np.exp(1.0J * phi0)

                # Check if return_response flag was set by user
                if not config.return_response:

                    if config.multi_sample:
                        moving_window = config.nsigma2 and config.nsigma2 * np.radians(
                            utils.get_window(nudata.freq[gff],
                                             pol=polstr[pp],
                                             dec=src_dec,
                                             deg=True))

                    # Loop over inputs
                    for pii, ii in enumerate(feeds):

                        is_good = flg & (np.abs(resp[pii, :]) >
                                         0.0) & (resp_err[pii, :] > 0.0)

                        # Set the intial gains based on raw response at transit
                        if is_good[itrans]:
                            results['gain_eval'][ff, ii,
                                                 0] = tools.invert_no_zero(
                                                     resp[pii, itrans])
                            results['frac_gain_err'][ff, ii, 0, :] = (
                                resp_err[pii, itrans] * tools.invert_no_zero(
                                    np.abs(resp[pii, itrans])))
                            results['weight_eval'][ff, ii, 0] = 0.5 * (
                                np.abs(resp[pii, itrans])**2 *
                                tools.invert_no_zero(resp_err[pii, itrans]))**2

                            results['index_eval'][ff, ii] = 0
                            results['gain'][ff,
                                            ii] = results['gain_eval'][ff, ii,
                                                                       0]
                            results['weight'][ff,
                                              ii] = results['weight_eval'][ff,
                                                                           ii,
                                                                           0]

                        # Exit if not performing multi time sample fit
                        if not config.multi_sample:
                            continue

                        if (2 * int(np.sum(is_good))) < (nparam + 1):
                            continue

                        try:
                            param, param_err, gain, gain_err, ndof, chisq, tval = fitter_function(
                                hag[is_good],
                                resp[pii, is_good],
                                resp_err[pii, is_good],
                                ha_eval,
                                window=moving_window,
                                tval=tval,
                                **config.fit)
                        except Exception as rex:
                            if config.verbose:
                                mlog.info(
                                    "Frequency %0.2f, Feed %d failed with error: %s"
                                    % (nudata.freq[gff], ii, rex))
                            continue

                        # Check for nan
                        wfit = (np.abs(gain) *
                                tools.invert_no_zero(np.abs(gain_err)))**2
                        if np.any(~np.isfinite(np.abs(gain))) or np.any(
                                ~np.isfinite(wfit)):
                            continue

                        # Save to results using the convention that you should *multiply* the visibilites by the gains
                        results['gain_eval'][
                            ff, ii, fitslc] = tools.invert_no_zero(gain)
                        results['frac_gain_err'][ff, ii, fitslc,
                                                 0] = gain_err.real
                        results['frac_gain_err'][ff, ii, fitslc,
                                                 1] = gain_err.imag
                        results['weight_eval'][ff, ii, fitslc] = wfit

                        results['parameter'][ff, ii, :] = param
                        results['parameter_err'][ff, ii, :] = param_err

                        results['ndof'][ff, ii, :] = ndof
                        results['chisq'][ff, ii, :] = chisq

                        # Check if the fit was succesful and update the gain evaluation index appropriately
                        if np.all((chisq / ndof.astype(np.float32)
                                   ) <= config.chisq_per_dof_threshold):
                            results['index_eval'][ff, ii] = ind_eval
                            results['gain'][ff, ii] = results['gain_eval'][
                                ff, ii, ind_eval]
                            results['weight'][ff, ii] = results['weight_eval'][
                                ff, ii, ind_eval]

                else:

                    # Return response only (do not fit model)
                    results['response'][ff, feeds, :] = resp
                    results['response_err'][ff, feeds, :] = resp_err

        # Save time to fit data
        results['runtime'][gg, 1] = time.time() - timeit_start_gg

        mlog.info("Time to fit (per frequency):  %0.3f sec" %
                  (results['runtime'][gg, 1] / ngroup, ))

        # Clean up
        del nudata
        gc.collect()

    # Print total run time
    mlog.info("TOTAL TIME TO LOAD: %0.3f min" %
              (np.sum(results['runtime'][:, 0]) / 60.0, ))
    mlog.info("TOTAL TIME TO FIT:  %0.3f min" %
              (np.sum(results['runtime'][:, 1]) / 60.0, ))

    # Set the best estimate of the gain
    if not config.return_response:

        flag = results['index_eval'] >= 0
        gain = results['gain']

        # Compute amplitude
        amp = np.abs(gain)

        # Hard cutoffs on the amplitude
        med_amp = np.median(amp[flag])
        min_amp = med_amp * config.min_amp_scale_factor
        max_amp = med_amp * config.max_amp_scale_factor

        flag &= ((amp >= min_amp) & (amp <= max_amp))

        # Flag outliers in amplitude for each frequency
        for pp, feeds in enumerate(pol):

            med_amp_by_pol = np.zeros(nfreq, dtype=np.float32)
            sig_amp_by_pol = np.zeros(nfreq, dtype=np.float32)

            for ff in range(nfreq):

                this_flag = flag[ff, feeds]

                if np.any(this_flag):

                    med, slow, shigh = utils.estimate_directional_scale(
                        amp[ff, feeds[this_flag]])
                    lower = med - config.nsigma_outlier * slow
                    upper = med + config.nsigma_outlier * shigh

                    flag[ff, feeds] &= ((amp[ff, feeds] >= lower) &
                                        (amp[ff, feeds] <= upper))

                    med_amp_by_pol[ff] = med
                    sig_amp_by_pol[ff] = 0.5 * (shigh - slow) / np.sqrt(
                        np.sum(this_flag, dtype=np.float32))

            if config.nsigma_med_outlier:

                med_flag = med_amp_by_pol > 0.0

                not_outlier = flag_outliers(med_amp_by_pol,
                                            med_flag,
                                            window=config.window_med_outlier,
                                            nsigma=config.nsigma_med_outlier)
                flag[:, feeds] &= not_outlier[:, np.newaxis]

                mlog.info("Pol %s:  %d frequencies are outliers." %
                          (polstr[pp],
                           np.sum(~not_outlier & med_flag, dtype=np.int)))

        # Determine bad frequencies
        flag_freq = (np.sum(flag, axis=1, dtype=np.float32) /
                     float(ninput)) > config.threshold_good_freq
        good_freq = np.flatnonzero(flag_freq)

        # Determine bad inputs
        fraction_good = np.sum(flag[good_freq, :], axis=0,
                               dtype=np.float32) / float(good_freq.size)
        flag_input = fraction_good > config.threshold_good_input

        # Finalize flag
        flag &= (flag_freq[:, np.newaxis] & flag_input[np.newaxis, :])

        # Interpolate gains
        interp_gain, interp_weight = interpolate_gain(
            freq,
            gain,
            results['weight'],
            flag=flag,
            length_scale=config.interpolation_length_scale,
            mlog=mlog)
        # Save gains to object
        results['flag'] = flag
        results['gain'] = interp_gain
        results['weight'] = interp_weight

    # Return results
    return results
예제 #6
0
    def process(self, sstream):
        """Calculate the mean(median) over the sidereal day.

        Parameters
        ----------
        sstream : andata.CorrData or containers.SiderealStream
            Timestream or sidereal stream.

        Returns
        -------
        mustream : same as sstream
            Sidereal stream containing only the mean(median) value.
        """
        from .flagging import daytime_flag, transit_flag

        # Make sure we are distributed over frequency
        sstream.redistribute("freq")

        # Extract lsd
        lsd = sstream.attrs[
            "lsd"] if "lsd" in sstream.attrs else sstream.attrs["csd"]
        lsd_list = lsd if hasattr(lsd, "__iter__") else [lsd]

        # Calculate the right ascension, method differs depending on input container
        if "ra" in sstream.index_map:
            ra = sstream.ra
            timestamp = {
                dd: ephemeris.csd_to_unix(dd + ra / 360.0)
                for dd in lsd_list
            }
            flag_quiet = np.ones(ra.size, dtype=np.bool)

        elif "time" in sstream.index_map:

            ra = ephemeris.lsa(sstream.time)
            timestamp = {lsd: sstream.time}
            flag_quiet = np.fix(ephemeris.unix_to_csd(sstream.time)) == lsd

        else:
            raise RuntimeError("Format of `sstream` argument is unknown.")

        # If requested, determine "quiet" region of sky.
        # In the case of a SiderealStack, there will be multiple LSDs and the
        # mask will be the logical AND of the mask from each individual LSDs.
        if self.mask_day:
            for dd, time_dd in timestamp.items():
                # Mask daytime data
                flag_quiet &= ~daytime_flag(time_dd)

        if self.mask_sources:
            for dd, time_dd in timestamp.items():
                # Mask data near bright source transits
                for body in self.body:
                    flag_quiet &= ~transit_flag(
                        body, time_dd, nsigma=self.nsigma)

        if self.mask_ra:
            # Only use data within user specified ranges of RA
            mask_ra = np.zeros(ra.size, dtype=np.bool)
            for ra_range in self.mask_ra:
                self.log.info("Using data between RA = [%0.2f, %0.2f] deg" %
                              tuple(ra_range))
                mask_ra |= (ra >= ra_range[0]) & (ra <= ra_range[1])
            flag_quiet &= mask_ra

        # Create output container
        newra = np.mean(ra[flag_quiet], keepdims=True)
        mustream = containers.SiderealStream(
            ra=newra,
            axes_from=sstream,
            attrs_from=sstream,
            distributed=True,
            comm=sstream.comm,
        )
        mustream.redistribute("freq")
        mustream.attrs["statistic"] = self._name_of_statistic

        # Dereference visibilities
        all_vis = sstream.vis[:].view(np.ndarray)
        mu_vis = mustream.vis[:].view(np.ndarray)

        # Combine the visibility weights with the quiet flag
        all_weight = sstream.weight[:].view(np.ndarray) * flag_quiet.astype(
            np.float32)
        if not self.inverse_variance:
            all_weight = (all_weight > 0.0).astype(np.float32)

        # Only include freqs/baselines where enough data is actually present
        frac_present = all_weight.sum(axis=-1) / flag_quiet.sum(axis=-1)
        all_weight *= (frac_present > self.missing_threshold)[..., np.newaxis]

        num_freq_missing_local = int(
            (frac_present < self.missing_threshold).all(axis=1).sum())
        num_freq_missing = self.comm.allreduce(num_freq_missing_local,
                                               op=MPI.SUM)

        self.log.info(
            "Cannot estimate a sidereal mean for "
            f"{100.0 * num_freq_missing / len(mustream.freq):.2f}% of all frequencies."
        )

        # Save the total number of nonzero samples as the weight dataset of the output
        # container
        mustream.weight[:] = np.sum(all_weight, axis=-1, keepdims=True)

        # If requested, compute median (requires loop over frequencies and baselines)
        if self.median:
            mu_vis[..., 0].real = weighted_median(all_vis.real.copy(),
                                                  all_weight)
            mu_vis[..., 0].imag = weighted_median(all_vis.imag.copy(),
                                                  all_weight)

            # Where all the weights are zero explicitly set the median to zero
            missing = ~(all_weight.any(axis=-1))
            mu_vis[missing, 0] = 0.0

        else:
            # Otherwise calculate the mean
            mu_vis[:] = np.sum(all_weight * all_vis, axis=-1, keepdims=True)
            mu_vis[:] *= tools.invert_no_zero(mustream.weight[:])

        # Return sidereal stream containing the mean value
        return mustream
예제 #7
0
    def view(self):
        if self.lsd is None:
            return panel.pane.Markdown("No data selected.")
        try:
            if self.intercylinder_only:
                name = "ringmap_intercyl"
            else:
                name = "ringmap"
            container = self.data.load_file(self.revision, self.lsd, name)
        except DataError as err:
            return panel.pane.Markdown(
                f"Error: {str(err)}. Please report this problem."
            )

        # Index map for ra (x-axis)
        index_map_ra = container.index_map["ra"]
        axis_name_ra = "RA [degrees]"

        # Index map for sin(ZA)/sin(theta) (y-axis)
        index_map_el = container.index_map["el"]
        axis_name_el = "sin(\u03B8)"

        # Apply data selections
        sel_beam = np.where(container.index_map["beam"] == self.beam)[0]
        sel_freq = np.where(
            [f[0] for f in container.index_map["freq"]] == self.frequency
        )[0]
        if self.polarization == self.mean_pol_text:
            sel_pol = np.where(
                (container.index_map["pol"] == "XX")
                | (container.index_map["pol"] == "YY")
            )[0]
            rmap = np.squeeze(container.map[sel_beam, sel_pol, sel_freq])
            rmap = np.nanmean(rmap, axis=0)
        else:
            sel_pol = np.where(container.index_map["pol"] == self.polarization)[0]
            rmap = np.squeeze(container.map[sel_beam, sel_pol, sel_freq])

        if self.flag_mask:
            rmap = np.where(self._flags_mask(container.index_map["ra"]), np.nan, rmap)

        if self.weight_mask:
            try:
                rms = np.squeeze(container.rms[sel_pol, sel_freq])
            except IndexError:
                logger.error(
                    f"rms dataset of ringmap file for rev {self.revision} lsd "
                    f"{self.lsd} is missing [{sel_pol}, {sel_freq}] (polarization, "
                    f"frequency). rms has shape {container.rms.shape}"
                )
                self.weight_mask = False
            else:
                rmap = np.where(self._weights_mask(rms), np.nan, rmap)

        # Set flagged data to nan
        rmap = np.where(rmap == 0, np.nan, rmap)

        if self.crosstalk_removal:
            # The mean of an all-nan slice (masked?) is nan. We don't need a warning about that.
            with warnings.catch_warnings():
                warnings.filterwarnings("ignore", r"All-NaN slice encountered")
                rmap -= np.nanmedian(rmap, axis=0)

        if self.template_subtraction:
            try:
                rm_stack = self.data.load_file_from_path(
                    self._stack_path, ccontainers.RingMap
                )
            except DataError as err:
                return panel.pane.Markdown(
                    f"Error: {str(err)}. Please report this problem."
                )

            # The stack file has all polarizations, so we can't reuse sel_pol
            if self.polarization == self.mean_pol_text:
                stack_sel_pol = np.where(
                    (rm_stack.index_map["pol"] == "XX")
                    | (rm_stack.index_map["pol"] == "YY")
                )[0]
            else:
                stack_sel_pol = np.where(
                    rm_stack.index_map["pol"] == self.polarization
                )[0]

            try:
                rm_stack = np.squeeze(rm_stack.map[sel_beam, stack_sel_pol, sel_freq])
            except IndexError as err:
                logger.error(
                    f"map dataset of ringmap stack file "
                    f"is missing [{sel_beam}, {stack_sel_pol}, {sel_freq}] (beam, polarization, "
                    f"frequency). map has shape {rm_stack.map.shape}:\n{err}"
                )
                self.template_subtraction = False
            else:
                if self.polarization == self.mean_pol_text:
                    rm_stack = np.nanmean(rm_stack, axis=0)

                # FIXME: this is a hack. remove when rinmap stack file fixed.
                rmap -= rm_stack.reshape(rm_stack.shape[0], -1, 2).mean(axis=-1)

        if self.transpose:
            rmap = rmap.T
            index_x = index_map_ra
            index_y = index_map_el
            axis_names = [axis_name_ra, axis_name_el]
            xlim, ylim = self.ylim, self.xlim
        else:
            index_x = index_map_el
            index_y = index_map_ra
            axis_names = [axis_name_el, axis_name_ra]
            xlim, ylim = self.xlim, self.ylim

        img = hv.Image(
            (index_x, index_y, rmap),
            datatype=["image", "grid"],
            kdims=axis_names,
        ).opts(
            clim=self.colormap_range,
            logz=self.logarithmic_colorscale,
            cmap=process_cmap("inferno", provider="matplotlib"),
            colorbar=True,
            xlim=xlim,
            ylim=ylim,
        )

        if self.serverside_rendering is not None:
            # set colormap
            cmap_inferno = copy.copy(matplotlib_cm.get_cmap("inferno"))
            cmap_inferno.set_under("black")
            cmap_inferno.set_bad("lightgray")

            # Set z-axis normalization (other possible values are 'eq_hist', 'cbrt').
            if self.logarithmic_colorscale:
                normalization = "log"
            else:
                normalization = "linear"

            # datashade/rasterize the image
            img = self.serverside_rendering(
                img,
                cmap=cmap_inferno,
                precompute=True,
                x_range=xlim,
                y_range=ylim,
                normalization=normalization,
            )

        if self.mark_moon:
            # Put a ring around the location of the moon if it transits on this day
            eph = skyfield_wrapper.ephemeris

            # Start and end times of the CSD
            st = csd_to_unix(self.lsd.lsd)
            et = csd_to_unix(self.lsd.lsd + 1)

            moon_time, moon_dec = chime.transit_times(
                eph["moon"], st, et, return_dec=True
            )

            if len(moon_time):
                lunar_transit = unix_to_csd(moon_time[0])
                lunar_dec = moon_dec[0]
                lunar_ra = (lunar_transit % 1) * 360.0
                lunar_za = np.sin(np.radians(lunar_dec - 49.0))
                if self.transpose:
                    img *= hv.Ellipse(lunar_ra, lunar_za, (5.5, 0.15))
                else:
                    img *= hv.Ellipse(lunar_za, lunar_ra, (0.04, 21))

        if self.mark_day_time:
            # Calculate the sun rise/set times on this sidereal day

            # Start and end times of the CSD
            start_time = csd_to_unix(self.lsd.lsd)
            end_time = csd_to_unix(self.lsd.lsd + 1)

            times, rises = chime.rise_set_times(
                skyfield_wrapper.ephemeris["sun"],
                start_time,
                end_time,
                diameter=-10,
            )
            sun_rise = 0
            sun_set = 0
            for t, r in zip(times, rises):
                if r:
                    sun_rise = (unix_to_csd(t) % 1) * 360
                else:
                    sun_set = (unix_to_csd(t) % 1) * 360

            # Highlight the day time data
            opts = {
                "color": "grey",
                "alpha": 0.5,
                "line_width": 1,
                "line_color": "black",
                "line_dash": "dashed",
            }
            if self.transpose:
                if sun_rise < sun_set:
                    img *= hv.VSpan(sun_rise, sun_set).opts(**opts)
                else:
                    img *= hv.VSpan(self.ylim[0], sun_set).opts(**opts)
                    img *= hv.VSpan(sun_rise, self.ylim[1]).opts(**opts)

            else:
                if sun_rise < sun_set:
                    img *= hv.HSpan(sun_rise, sun_set).opts(**opts)
                else:
                    img *= hv.HSpan(self.ylim[0], sun_set).opts(**opts)
                    img *= hv.HSpan(sun_rise, self.ylim[1]).opts(**opts)

        img.opts(
            # Fix height, but make width responsive
            height=self.height,
            responsive=True,
            shared_axes=True,
            bgcolor="lightgray",
        )

        return panel.Row(img, width_policy="max")
예제 #8
0
def main(config_file=None, logging_params=DEFAULT_LOGGING):

    # Load config
    config = DEFAULTS.deepcopy()
    if config_file is not None:
        config.merge(NameSpace(load_yaml_config(config_file)))

    # Setup logging
    log.setup_logging(logging_params)
    logger = log.get_logger(__name__)

    ## Load data for flagging
    # Load fpga restarts
    time_fpga_restart = []
    if config.fpga_restart_file is not None:

        with open(config.fpga_restart_file, 'r') as handler:
            for line in handler:
                time_fpga_restart.append(
                    ephemeris.datetime_to_unix(
                        ephemeris.timestr_to_datetime(line.split('_')[0])))

    time_fpga_restart = np.array(time_fpga_restart)

    # Load housekeeping flag
    if config.housekeeping_file is not None:
        ftemp = TempData.from_acq_h5(config.housekeeping_file,
                                     datasets=["time_flag"])
    else:
        ftemp = None

    # Load jump data
    if config.jump_file is not None:
        with h5py.File(config.jump_file, 'r') as handler:
            jump_time = handler["time"][:]
            jump_size = handler["jump_size"][:]
    else:
        jump_time = None
        jump_size = None

    # Load rain data
    if config.rain_file is not None:
        with h5py.File(config.rain_file, 'r') as handler:
            rain_ranges = handler["time_range_conservative"][:]
    else:
        rain_ranges = []

    # Load data flags
    data_flags = {}
    if config.data_flags:
        finder.connect_database()
        flag_types = finder.DataFlagType.select()
        possible_data_flags = []
        for ft in flag_types:
            possible_data_flags.append(ft.name)
            if ft.name in config.data_flags:
                new_data_flags = finder.DataFlag.select().where(
                    finder.DataFlag.type == ft)
                data_flags[ft.name] = list(new_data_flags)

    # Set desired range of time
    start_time = (ephemeris.datetime_to_unix(
        datetime.datetime(
            *config.start_date)) if config.start_date is not None else None)
    end_time = (ephemeris.datetime_to_unix(datetime.datetime(
        *config.end_date)) if config.end_date is not None else None)

    ## Find gain files
    files = {}
    for src in config.sources:
        files[src] = sorted(
            glob.glob(
                os.path.join(config.directory, src.lower(),
                             "%s_%s_lsd_*.h5" % (
                                 config.prefix,
                                 src.lower(),
                             ))))
    csd = {}
    for src in config.sources:
        csd[src] = np.array(
            [int(os.path.splitext(ff)[0][-4:]) for ff in files[src]])

    for src in config.sources:
        logger.info("%s:  %d files" % (src, len(csd[src])))

    ## Remove files that occur during flag
    csd_flag = {}
    for src in config.sources:

        body = ephemeris.source_dictionary[src]

        csd_flag[src] = np.ones(csd[src].size, dtype=np.bool)

        for ii, cc in enumerate(csd[src][:]):

            ttrans = ephemeris.transit_times(body,
                                             ephemeris.csd_to_unix(cc))[0]

            if (start_time is not None) and (ttrans < start_time):
                csd_flag[src][ii] = False
                continue

            if (end_time is not None) and (ttrans > end_time):
                csd_flag[src][ii] = False
                continue

            # If requested, remove daytime transits
            if not config.include_daytime.get(
                    src, config.include_daytime.default) and daytime_flag(
                        ttrans)[0]:
                logger.info("%s CSD %d:  daytime transit" % (src, cc))
                csd_flag[src][ii] = False
                continue

            # Remove transits during HKP drop out
            if ftemp is not None:
                itemp = np.flatnonzero(
                    (ftemp.time[:] >= (ttrans - config.transit_window))
                    & (ftemp.time[:] <= (ttrans + config.transit_window)))
                tempflg = ftemp['time_flag'][itemp]
                if (tempflg.size == 0) or ((np.sum(tempflg, dtype=np.float32) /
                                            float(tempflg.size)) < 0.50):
                    logger.info("%s CSD %d:  no housekeeping" % (src, cc))
                    csd_flag[src][ii] = False
                    continue

            # Remove transits near jumps
            if jump_time is not None:
                njump = np.sum((jump_size > config.min_jump_size)
                               & (jump_time > (ttrans - config.jump_window))
                               & (jump_time < ttrans))
                if njump > config.max_njump:
                    logger.info("%s CSD %d:  %d jumps before" %
                                (src, cc, njump))
                    csd_flag[src][ii] = False
                    continue

            # Remove transits near rain
            for rng in rain_ranges:
                if (((ttrans - config.transit_window) <= rng[1])
                        and ((ttrans + config.transit_window) >= rng[0])):

                    logger.info("%s CSD %d:  during rain" % (src, cc))
                    csd_flag[src][ii] = False
                    break

            # Remove transits during data flag
            for name, flag_list in data_flags.items():

                if csd_flag[src][ii]:

                    for flg in flag_list:

                        if (((ttrans - config.transit_window) <=
                             flg.finish_time)
                                and ((ttrans + config.transit_window) >=
                                     flg.start_time)):

                            logger.info("%s CSD %d:  %s flag" %
                                        (src, cc, name))
                            csd_flag[src][ii] = False
                            break

    # Print number of files left after flagging
    for src in config.sources:
        logger.info("%s:  %d files (after flagging)" %
                    (src, np.sum(csd_flag[src])))

    ## Construct pair wise differences
    npair = len(config.diff_pair)
    shift = [nd * 24.0 * 3600.0 for nd in config.nday_shift]

    calmap = []
    calpair = []

    for (tsrc, csrc), sh in zip(config.diff_pair, shift):

        body_test = ephemeris.source_dictionary[tsrc]
        body_cal = ephemeris.source_dictionary[csrc]

        for ii, cc in enumerate(csd[tsrc]):

            if csd_flag[tsrc][ii]:

                test_transit = ephemeris.transit_times(
                    body_test, ephemeris.csd_to_unix(cc))[0]
                cal_transit = ephemeris.transit_times(body_cal,
                                                      test_transit + sh)[0]
                cal_csd = int(np.fix(ephemeris.unix_to_csd(cal_transit)))

                ttrans = np.sort([test_transit, cal_transit])

                if cal_csd in csd[csrc]:
                    jj = list(csd[csrc]).index(cal_csd)

                    if csd_flag[csrc][jj] and not np.any(
                        (time_fpga_restart >= ttrans[0])
                            & (time_fpga_restart <= ttrans[1])):
                        calmap.append([ii, jj])
                        calpair.append([tsrc, csrc])

    calmap = np.array(calmap)
    calpair = np.array(calpair)

    ntransit = calmap.shape[0]

    logger.info("%d total transit pairs" % ntransit)
    for ii in range(ntransit):

        t1 = ephemeris.transit_times(
            ephemeris.source_dictionary[calpair[ii, 0]],
            ephemeris.csd_to_unix(csd[calpair[ii, 0]][calmap[ii, 0]]))[0]
        t2 = ephemeris.transit_times(
            ephemeris.source_dictionary[calpair[ii, 1]],
            ephemeris.csd_to_unix(csd[calpair[ii, 1]][calmap[ii, 1]]))[0]

        logger.info("%s (%d) - %s (%d):  %0.1f hr" %
                    (calpair[ii, 0], csd_flag[calpair[ii, 0]][calmap[ii, 0]],
                     calpair[ii, 1], csd_flag[calpair[ii, 1]][calmap[ii, 1]],
                     (t1 - t2) / 3600.0))

    # Determine unique diff pairs
    diff_name = np.array(['%s/%s' % tuple(cp) for cp in calpair])
    uniq_diff, lbl_diff, cnt_diff = np.unique(diff_name,
                                              return_inverse=True,
                                              return_counts=True)
    ndiff = uniq_diff.size

    for ud, udcnt in zip(uniq_diff, cnt_diff):
        logger.info("%s:  %d transit pairs" % (ud, udcnt))

    ## Load gains
    inputmap = tools.get_correlator_inputs(datetime.datetime.utcnow(),
                                           correlator='chime')
    ninput = len(inputmap)
    nfreq = 1024

    # Set up gain arrays
    gain = np.zeros((2, nfreq, ninput, ntransit), dtype=np.complex64)
    weight = np.zeros((2, nfreq, ninput, ntransit), dtype=np.float32)
    input_sort = np.zeros((2, ninput, ntransit), dtype=np.int)

    kcsd = np.zeros((2, ntransit), dtype=np.float32)
    timestamp = np.zeros((2, ntransit), dtype=np.float64)
    is_daytime = np.zeros((2, ntransit), dtype=np.bool)

    for tt in range(ntransit):

        for kk, (src, ind) in enumerate(zip(calpair[tt], calmap[tt])):

            body = ephemeris.source_dictionary[src]
            filename = files[src][ind]

            logger.info("%s:  %s" % (src, filename))

            temp = containers.StaticGainData.from_file(filename)

            freq = temp.freq[:]
            inputs = temp.input[:]

            isort = reorder_inputs(inputmap, inputs)
            inputs = inputs[isort]

            gain[kk, :, :, tt] = temp.gain[:, isort]
            weight[kk, :, :, tt] = temp.weight[:, isort]
            input_sort[kk, :, tt] = isort

            kcsd[kk, tt] = temp.attrs['lsd']
            timestamp[kk, tt] = ephemeris.transit_times(
                body, ephemeris.csd_to_unix(kcsd[kk, tt]))[0]
            is_daytime[kk, tt] = daytime_flag(timestamp[kk, tt])[0]

            if np.any(isort != np.arange(isort.size)):
                logger.info("Input ordering has changed: %s" %
                            ephemeris.unix_to_datetime(
                                timestamp[kk, tt]).strftime("%Y-%m-%d"))

        logger.info("")

    inputs = np.array([(inp.id, inp.input_sn) for inp in inputmap],
                      dtype=[('chan_id', 'u2'), ('correlator_input', 'S32')])

    ## Load input flags
    inpflg = np.ones((2, ninput, ntransit), dtype=np.bool)

    min_flag_time = np.min(timestamp) - 7.0 * 24.0 * 60.0 * 60.0
    max_flag_time = np.max(timestamp) + 7.0 * 24.0 * 60.0 * 60.0

    flaginput_files = sorted(
        glob.glob(
            os.path.join(config.flaginput_dir, "*" + config.flaginput_suffix,
                         "*.h5")))

    if flaginput_files:
        logger.info("Found %d flaginput files." % len(flaginput_files))
        tmp = andata.FlagInputData.from_acq_h5(flaginput_files, datasets=())
        start, stop = [
            int(yy) for yy in np.percentile(
                np.flatnonzero((tmp.time[:] >= min_flag_time)
                               & (tmp.time[:] <= max_flag_time)), [0, 100])
        ]

        cont = andata.FlagInputData.from_acq_h5(flaginput_files,
                                                start=start,
                                                stop=stop,
                                                datasets=['flag'])

        for kk in range(2):
            inpflg[kk, :, :] = cont.resample('flag',
                                             timestamp[kk],
                                             transpose=True)

            logger.info("Flaginput time offsets in minutes (pair %d):" % kk)
            logger.info(
                str(
                    np.fix((cont.time[cont.search_update_time(timestamp[kk])] -
                            timestamp[kk]) / 60.0).astype(np.int)))

    # Sort flags so they are in same order
    for tt in range(ntransit):
        for kk in range(2):
            inpflg[kk, :, tt] = inpflg[kk, input_sort[kk, :, tt], tt]

    # Do not apply input flag to phase reference
    for ii in config.index_phase_ref:
        inpflg[:, ii, :] = True

    ## Flag out gains with high uncertainty and frequencies with large fraction of data flagged
    frac_err = tools.invert_no_zero(np.sqrt(weight) * np.abs(gain))

    flag = np.all((weight > 0.0) & (np.abs(gain) > 0.0) &
                  (frac_err < config.max_uncertainty),
                  axis=0)

    freq_flag = ((np.sum(flag, axis=(1, 2), dtype=np.float32) /
                  float(np.prod(flag.shape[1:]))) > config.freq_threshold)

    if config.apply_rfi_mask:
        freq_flag &= np.logical_not(rfi.frequency_mask(freq))

    flag = flag & freq_flag[:, np.newaxis, np.newaxis]

    good_freq = np.flatnonzero(freq_flag)

    logger.info("Number good frequencies %d" % good_freq.size)

    ## Generate flags with more conservative cuts on frequency
    c_flag = flag & np.all(frac_err < config.conservative.max_uncertainty,
                           axis=0)

    c_freq_flag = ((np.sum(c_flag, axis=(1, 2), dtype=np.float32) /
                    float(np.prod(c_flag.shape[1:]))) >
                   config.conservative.freq_threshold)

    if config.conservative.apply_rfi_mask:
        c_freq_flag &= np.logical_not(rfi.frequency_mask(freq))

    c_flag = c_flag & c_freq_flag[:, np.newaxis, np.newaxis]

    c_good_freq = np.flatnonzero(c_freq_flag)

    logger.info("Number good frequencies (conservative thresholds) %d" %
                c_good_freq.size)

    ## Apply input flags
    flag &= np.all(inpflg[:, np.newaxis, :, :], axis=0)

    ## Update flags based on beam flag
    if config.beam_flag_file is not None:

        dbeam = andata.BaseData.from_acq_h5(config.beam_flag_file)

        db_csd = np.floor(ephemeris.unix_to_csd(dbeam.index_map['time'][:]))

        for ii, name in enumerate(config.beam_flag_datasets):
            logger.info("Applying %s beam flag." % name)
            if not ii:
                db_flag = dbeam.flags[name][:]
            else:
                db_flag &= dbeam.flags[name][:]

        cnt = 0
        for ii, dbc in enumerate(db_csd):

            this_csd = np.flatnonzero(np.any(kcsd == dbc, axis=0))

            if this_csd.size > 0:

                logger.info("Beam flag for %d matches %s." %
                            (dbc, str(kcsd[:, this_csd])))

                flag[:, :, this_csd] &= db_flag[np.newaxis, :, ii, np.newaxis]

                cnt += 1

        logger.info("Applied %0.1f percent of the beam flags" %
                    (100.0 * cnt / float(db_csd.size), ))

    ## Flag inputs with large amount of missing data
    input_frac_flagged = (
        np.sum(flag[good_freq, :, :], axis=(0, 2), dtype=np.float32) /
        float(good_freq.size * ntransit))
    input_flag = input_frac_flagged > config.input_threshold

    for ii in config.index_phase_ref:
        logger.info("Phase reference %d has %0.3f fraction of data flagged." %
                    (ii, input_frac_flagged[ii]))
        input_flag[ii] = True

    good_input = np.flatnonzero(input_flag)

    flag = flag & input_flag[np.newaxis, :, np.newaxis]

    logger.info("Number good inputs %d" % good_input.size)

    ## Calibrate
    gaincal = gain[0] * tools.invert_no_zero(gain[1])

    frac_err_cal = np.sqrt(frac_err[0]**2 + frac_err[1]**2)

    count = np.sum(flag, axis=-1, dtype=np.int)
    stat_flag = count > config.min_num_transit

    ## Calculate phase
    amp = np.abs(gaincal)
    phi = np.angle(gaincal)

    ## Calculate polarisation groups
    pol_dict = {'E': 'X', 'S': 'Y'}
    cyl_dict = {2: 'A', 3: 'B', 4: 'C', 5: 'D'}

    if config.group_by_cyl:
        group_id = [
            (inp.pol,
             inp.cyl) if tools.is_chime(inp) and (ii in good_input) else None
            for ii, inp in enumerate(inputmap)
        ]
    else:
        group_id = [
            inp.pol if tools.is_chime(inp) and (ii in good_input) else None
            for ii, inp in enumerate(inputmap)
        ]

    ugroup_id = sorted([uidd for uidd in set(group_id) if uidd is not None])
    ngroup = len(ugroup_id)

    group_list_noref = [
        np.array([
            gg for gg, gid in enumerate(group_id)
            if (gid == ugid) and gg not in config.index_phase_ref
        ]) for ugid in ugroup_id
    ]

    group_list = [
        np.array([gg for gg, gid in enumerate(group_id) if gid == ugid])
        for ugid in ugroup_id
    ]

    if config.group_by_cyl:
        group_str = [
            "%s-%s" % (pol_dict[pol], cyl_dict[cyl]) for pol, cyl in ugroup_id
        ]
    else:
        group_str = [pol_dict[pol] for pol in ugroup_id]

    index_phase_ref = []
    for gstr, igroup in zip(group_str, group_list):
        candidate = [ii for ii in config.index_phase_ref if ii in igroup]
        if len(candidate) != 1:
            index_phase_ref.append(None)
        else:
            index_phase_ref.append(candidate[0])

    logger.info(
        "Phase reference: %s" %
        ', '.join(['%s = %s' % tpl
                   for tpl in zip(group_str, index_phase_ref)]))

    ## Apply thermal correction to amplitude
    if config.amp_thermal.enabled:

        logger.info("Applying thermal correction.")

        # Load the temperatures
        tdata = TempData.from_acq_h5(config.amp_thermal.filename)

        index = tdata.search_sensors(config.amp_thermal.sensor)[0]

        temp = tdata.datasets[config.amp_thermal.field][index]
        temp_func = scipy.interpolate.interp1d(tdata.time, temp,
                                               **config.amp_thermal.interp)

        itemp = temp_func(timestamp)
        dtemp = itemp[0] - itemp[1]

        flag_func = scipy.interpolate.interp1d(
            tdata.time, tdata.datasets['flag'][index].astype(np.float32),
            **config.amp_thermal.interp)

        dtemp_flag = np.all(flag_func(timestamp) == 1.0, axis=0)

        flag &= dtemp_flag[np.newaxis, np.newaxis, :]

        for gstr, igroup in zip(group_str, group_list):
            pstr = gstr[0]
            thermal_coeff = np.polyval(config.amp_thermal.coeff[pstr], freq)
            gthermal = 1.0 + thermal_coeff[:, np.newaxis, np.newaxis] * dtemp[
                np.newaxis, np.newaxis, :]

            amp[:, igroup, :] *= tools.invert_no_zero(gthermal)

    ## Compute common mode
    if config.subtract_common_mode_before:
        logger.info("Calculating common mode amplitude and phase.")
        cmn_amp, flag_cmn_amp = compute_common_mode(amp,
                                                    flag,
                                                    group_list_noref,
                                                    median=False)
        cmn_phi, flag_cmn_phi = compute_common_mode(phi,
                                                    flag,
                                                    group_list_noref,
                                                    median=False)

        # Subtract common mode (from phase only)
        logger.info("Subtracting common mode phase.")
        group_flag = np.zeros((ngroup, ninput), dtype=np.bool)
        for gg, igroup in enumerate(group_list):
            group_flag[gg, igroup] = True
            phi[:,
                igroup, :] = phi[:, igroup, :] - cmn_phi[:, gg, np.newaxis, :]

            for iref in index_phase_ref:
                if (iref is not None) and (iref in igroup):
                    flag[:, iref, :] = flag_cmn_phi[:, gg, :]

    ## If requested, determine and subtract a delay template
    if config.fit_delay_before:
        logger.info("Fitting delay template.")
        omega = timing.FREQ_TO_OMEGA * freq

        tau, tau_flag, _ = construct_delay_template(
            omega,
            phi,
            c_flag & flag,
            min_num_freq_for_delay_fit=config.min_num_freq_for_delay_fit)

        # Compute residuals
        logger.info("Subtracting delay template.")
        phi = phi - tau[np.newaxis, :, :] * omega[:, np.newaxis, np.newaxis]

    ## Normalize by median over time
    logger.info("Calculating median amplitude and phase.")
    med_amp = np.zeros((nfreq, ninput, ndiff), dtype=amp.dtype)
    med_phi = np.zeros((nfreq, ninput, ndiff), dtype=phi.dtype)

    count_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=np.int)
    stat_flag_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=np.bool)

    def weighted_mean(yy, ww, axis=-1):
        return np.sum(ww * yy, axis=axis) * tools.invert_no_zero(
            np.sum(ww, axis=axis))

    for dd in range(ndiff):

        this_diff = np.flatnonzero(lbl_diff == dd)

        this_flag = flag[:, :, this_diff]

        this_amp = amp[:, :, this_diff]
        this_amp_err = this_amp * frac_err_cal[:, :,
                                               this_diff] * this_flag.astype(
                                                   np.float32)

        this_phi = phi[:, :, this_diff]
        this_phi_err = frac_err_cal[:, :, this_diff] * this_flag.astype(
            np.float32)

        count_by_diff[:, :, dd] = np.sum(this_flag, axis=-1, dtype=np.int)
        stat_flag_by_diff[:, :,
                          dd] = count_by_diff[:, :,
                                              dd] > config.min_num_transit

        if config.weighted_mean == 2:
            logger.info("Calculating inverse variance weighted mean.")
            med_amp[:, :,
                    dd] = weighted_mean(this_amp,
                                        tools.invert_no_zero(this_amp_err**2),
                                        axis=-1)
            med_phi[:, :,
                    dd] = weighted_mean(this_phi,
                                        tools.invert_no_zero(this_phi_err**2),
                                        axis=-1)

        elif config.weighted_mean == 1:
            logger.info("Calculating uniform weighted mean.")
            med_amp[:, :, dd] = weighted_mean(this_amp,
                                              this_flag.astype(np.float32),
                                              axis=-1)
            med_phi[:, :, dd] = weighted_mean(this_phi,
                                              this_flag.astype(np.float32),
                                              axis=-1)

        else:
            logger.info("Calculating median value.")
            for ff in range(nfreq):
                for ii in range(ninput):
                    if np.any(this_flag[ff, ii, :]):
                        med_amp[ff, ii, dd] = wq.median(
                            this_amp[ff, ii, :],
                            this_flag[ff, ii, :].astype(np.float32))
                        med_phi[ff, ii, dd] = wq.median(
                            this_phi[ff, ii, :],
                            this_flag[ff, ii, :].astype(np.float32))

    damp = np.zeros_like(amp)
    dphi = np.zeros_like(phi)
    for dd in range(ndiff):
        this_diff = np.flatnonzero(lbl_diff == dd)
        damp[:, :, this_diff] = amp[:, :, this_diff] * tools.invert_no_zero(
            med_amp[:, :, dd, np.newaxis]) - 1.0
        dphi[:, :,
             this_diff] = phi[:, :, this_diff] - med_phi[:, :, dd, np.newaxis]

    # Compute common mode
    if not config.subtract_common_mode_before:
        logger.info("Calculating common mode amplitude and phase.")
        cmn_amp, flag_cmn_amp = compute_common_mode(damp,
                                                    flag,
                                                    group_list_noref,
                                                    median=True)
        cmn_phi, flag_cmn_phi = compute_common_mode(dphi,
                                                    flag,
                                                    group_list_noref,
                                                    median=True)

        # Subtract common mode (from phase only)
        logger.info("Subtracting common mode phase.")
        group_flag = np.zeros((ngroup, ninput), dtype=np.bool)
        for gg, igroup in enumerate(group_list):
            group_flag[gg, igroup] = True
            dphi[:, igroup, :] = dphi[:, igroup, :] - cmn_phi[:, gg,
                                                              np.newaxis, :]

            for iref in index_phase_ref:
                if (iref is not None) and (iref in igroup):
                    flag[:, iref, :] = flag_cmn_phi[:, gg, :]

    ## Compute RMS
    logger.info("Calculating RMS of amplitude and phase.")
    mad_amp = np.zeros((nfreq, ninput), dtype=amp.dtype)
    std_amp = np.zeros((nfreq, ninput), dtype=amp.dtype)

    mad_phi = np.zeros((nfreq, ninput), dtype=phi.dtype)
    std_phi = np.zeros((nfreq, ninput), dtype=phi.dtype)

    mad_amp_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=amp.dtype)
    std_amp_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=amp.dtype)

    mad_phi_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=phi.dtype)
    std_phi_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=phi.dtype)

    for ff in range(nfreq):
        for ii in range(ninput):
            this_flag = flag[ff, ii, :]
            if np.any(this_flag):
                std_amp[ff, ii] = np.std(damp[ff, ii, this_flag])
                std_phi[ff, ii] = np.std(dphi[ff, ii, this_flag])

                mad_amp[ff, ii] = 1.48625 * wq.median(
                    np.abs(damp[ff, ii, :]), this_flag.astype(np.float32))
                mad_phi[ff, ii] = 1.48625 * wq.median(
                    np.abs(dphi[ff, ii, :]), this_flag.astype(np.float32))

                for dd in range(ndiff):
                    this_diff = this_flag & (lbl_diff == dd)
                    if np.any(this_diff):

                        std_amp_by_diff[ff, ii, dd] = np.std(damp[ff, ii,
                                                                  this_diff])
                        std_phi_by_diff[ff, ii, dd] = np.std(dphi[ff, ii,
                                                                  this_diff])

                        mad_amp_by_diff[ff, ii, dd] = 1.48625 * wq.median(
                            np.abs(damp[ff, ii, :]),
                            this_diff.astype(np.float32))
                        mad_phi_by_diff[ff, ii, dd] = 1.48625 * wq.median(
                            np.abs(dphi[ff, ii, :]),
                            this_diff.astype(np.float32))

    ## Construct delay template
    if not config.fit_delay_before:
        logger.info("Fitting delay template.")
        omega = timing.FREQ_TO_OMEGA * freq

        tau, tau_flag, _ = construct_delay_template(
            omega,
            dphi,
            c_flag & flag,
            min_num_freq_for_delay_fit=config.min_num_freq_for_delay_fit)

        # Compute residuals
        logger.info("Subtracting delay template from phase.")
        resid = (dphi - tau[np.newaxis, :, :] *
                 omega[:, np.newaxis, np.newaxis]) * flag.astype(np.float32)

    else:
        resid = dphi

    tau_count = np.sum(tau_flag, axis=-1, dtype=np.int)
    tau_stat_flag = tau_count > config.min_num_transit

    tau_count_by_diff = np.zeros((ninput, ndiff), dtype=np.int)
    tau_stat_flag_by_diff = np.zeros((ninput, ndiff), dtype=np.bool)
    for dd in range(ndiff):
        this_diff = np.flatnonzero(lbl_diff == dd)
        tau_count_by_diff[:, dd] = np.sum(tau_flag[:, this_diff],
                                          axis=-1,
                                          dtype=np.int)
        tau_stat_flag_by_diff[:,
                              dd] = tau_count_by_diff[:,
                                                      dd] > config.min_num_transit

    ## Calculate statistics of residuals
    std_resid = np.zeros((nfreq, ninput), dtype=phi.dtype)
    mad_resid = np.zeros((nfreq, ninput), dtype=phi.dtype)

    std_resid_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=phi.dtype)
    mad_resid_by_diff = np.zeros((nfreq, ninput, ndiff), dtype=phi.dtype)

    for ff in range(nfreq):
        for ii in range(ninput):
            this_flag = flag[ff, ii, :]
            if np.any(this_flag):
                std_resid[ff, ii] = np.std(resid[ff, ii, this_flag])
                mad_resid[ff, ii] = 1.48625 * wq.median(
                    np.abs(resid[ff, ii, :]), this_flag.astype(np.float32))

                for dd in range(ndiff):
                    this_diff = this_flag & (lbl_diff == dd)
                    if np.any(this_diff):
                        std_resid_by_diff[ff, ii,
                                          dd] = np.std(resid[ff, ii,
                                                             this_diff])
                        mad_resid_by_diff[ff, ii, dd] = 1.48625 * wq.median(
                            np.abs(resid[ff, ii, :]),
                            this_diff.astype(np.float32))

    ## Calculate statistics of delay template
    mad_tau = np.zeros((ninput, ), dtype=phi.dtype)
    std_tau = np.zeros((ninput, ), dtype=phi.dtype)

    mad_tau_by_diff = np.zeros((ninput, ndiff), dtype=phi.dtype)
    std_tau_by_diff = np.zeros((ninput, ndiff), dtype=phi.dtype)

    for ii in range(ninput):
        this_flag = tau_flag[ii]
        if np.any(this_flag):
            std_tau[ii] = np.std(tau[ii, this_flag])
            mad_tau[ii] = 1.48625 * wq.median(np.abs(tau[ii]),
                                              this_flag.astype(np.float32))

            for dd in range(ndiff):
                this_diff = this_flag & (lbl_diff == dd)
                if np.any(this_diff):
                    std_tau_by_diff[ii, dd] = np.std(tau[ii, this_diff])
                    mad_tau_by_diff[ii, dd] = 1.48625 * wq.median(
                        np.abs(tau[ii]), this_diff.astype(np.float32))

    ## Define output
    res = {
        "timestamp": {
            "data": timestamp,
            "axis": ["div", "time"]
        },
        "is_daytime": {
            "data": is_daytime,
            "axis": ["div", "time"]
        },
        "csd": {
            "data": kcsd,
            "axis": ["div", "time"]
        },
        "pair_map": {
            "data": lbl_diff,
            "axis": ["time"]
        },
        "pair_count": {
            "data": cnt_diff,
            "axis": ["pair"]
        },
        "gain": {
            "data": gaincal,
            "axis": ["freq", "input", "time"]
        },
        "frac_err": {
            "data": frac_err_cal,
            "axis": ["freq", "input", "time"]
        },
        "flags/gain": {
            "data": flag,
            "axis": ["freq", "input", "time"],
            "flag": True
        },
        "flags/gain_conservative": {
            "data": c_flag,
            "axis": ["freq", "input", "time"],
            "flag": True
        },
        "flags/count": {
            "data": count,
            "axis": ["freq", "input"],
            "flag": True
        },
        "flags/stat": {
            "data": stat_flag,
            "axis": ["freq", "input"],
            "flag": True
        },
        "flags/count_by_pair": {
            "data": count_by_diff,
            "axis": ["freq", "input", "pair"],
            "flag": True
        },
        "flags/stat_by_pair": {
            "data": stat_flag_by_diff,
            "axis": ["freq", "input", "pair"],
            "flag": True
        },
        "med_amp": {
            "data": med_amp,
            "axis": ["freq", "input", "pair"]
        },
        "med_phi": {
            "data": med_phi,
            "axis": ["freq", "input", "pair"]
        },
        "flags/group_flag": {
            "data": group_flag,
            "axis": ["group", "input"],
            "flag": True
        },
        "cmn_amp": {
            "data": cmn_amp,
            "axis": ["freq", "group", "time"]
        },
        "cmn_phi": {
            "data": cmn_phi,
            "axis": ["freq", "group", "time"]
        },
        "amp": {
            "data": damp,
            "axis": ["freq", "input", "time"]
        },
        "phi": {
            "data": dphi,
            "axis": ["freq", "input", "time"]
        },
        "std_amp": {
            "data": std_amp,
            "axis": ["freq", "input"]
        },
        "std_amp_by_pair": {
            "data": std_amp_by_diff,
            "axis": ["freq", "input", "pair"]
        },
        "mad_amp": {
            "data": mad_amp,
            "axis": ["freq", "input"]
        },
        "mad_amp_by_pair": {
            "data": mad_amp_by_diff,
            "axis": ["freq", "input", "pair"]
        },
        "std_phi": {
            "data": std_phi,
            "axis": ["freq", "input"]
        },
        "std_phi_by_pair": {
            "data": std_phi_by_diff,
            "axis": ["freq", "input", "pair"]
        },
        "mad_phi": {
            "data": mad_phi,
            "axis": ["freq", "input"]
        },
        "mad_phi_by_pair": {
            "data": mad_phi_by_diff,
            "axis": ["freq", "input", "pair"]
        },
        "tau": {
            "data": tau,
            "axis": ["input", "time"]
        },
        "flags/tau": {
            "data": tau_flag,
            "axis": ["input", "time"],
            "flag": True
        },
        "flags/tau_count": {
            "data": tau_count,
            "axis": ["input"],
            "flag": True
        },
        "flags/tau_stat": {
            "data": tau_stat_flag,
            "axis": ["input"],
            "flag": True
        },
        "flags/tau_count_by_pair": {
            "data": tau_count_by_diff,
            "axis": ["input", "pair"],
            "flag": True
        },
        "flags/tau_stat_by_pair": {
            "data": tau_stat_flag_by_diff,
            "axis": ["input", "pair"],
            "flag": True
        },
        "std_tau": {
            "data": std_tau,
            "axis": ["input"]
        },
        "std_tau_by_pair": {
            "data": std_tau_by_diff,
            "axis": ["input", "pair"]
        },
        "mad_tau": {
            "data": mad_tau,
            "axis": ["input"]
        },
        "mad_tau_by_pair": {
            "data": mad_tau_by_diff,
            "axis": ["input", "pair"]
        },
        "resid_phi": {
            "data": resid,
            "axis": ["freq", "input", "time"]
        },
        "std_resid_phi": {
            "data": std_resid,
            "axis": ["freq", "input"]
        },
        "std_resid_phi_by_pair": {
            "data": std_resid_by_diff,
            "axis": ["freq", "input", "pair"]
        },
        "mad_resid_phi": {
            "data": mad_resid,
            "axis": ["freq", "input"]
        },
        "mad_resid_phi_by_pair": {
            "data": mad_resid_by_diff,
            "axis": ["freq", "input", "pair"]
        },
    }

    ## Create the output container
    logger.info("Creating StabilityData container.")
    data = StabilityData()

    data.create_index_map(
        "div", np.array(["numerator", "denominator"], dtype=np.string_))
    data.create_index_map("pair", np.array(uniq_diff, dtype=np.string_))
    data.create_index_map("group", np.array(group_str, dtype=np.string_))

    data.create_index_map("freq", freq)
    data.create_index_map("input", inputs)
    data.create_index_map("time", timestamp[0, :])

    logger.info("Writing datsets to container.")
    for name, dct in res.iteritems():
        is_flag = dct.get('flag', False)
        if is_flag:
            dset = data.create_flag(name.split('/')[-1], data=dct['data'])
        else:
            dset = data.create_dataset(name, data=dct['data'])

        dset.attrs['axis'] = np.array(dct['axis'], dtype=np.string_)

    data.attrs['phase_ref'] = np.array(
        [iref for iref in index_phase_ref if iref is not None])

    # Determine the output filename and save results
    start_time, end_time = ephemeris.unix_to_datetime(
        np.percentile(timestamp, [0, 100]))
    tfmt = "%Y%m%d"
    night_str = 'night_' if not np.any(is_daytime) else ''
    output_file = os.path.join(
        config.output_dir, "%s_%s_%sraw_stability_data.h5" %
        (start_time.strftime(tfmt), end_time.strftime(tfmt), night_str))

    logger.info("Saving results to %s." % output_file)
    data.save(output_file)
예제 #9
0
    def view(self):
        if self.lsd is None:
            return panel.pane.Markdown("No data selected.")
        try:
            sens_container = self.data.load_file(self.revision, self.lsd,
                                                 "sensitivity")
        except DataError as err:
            return panel.pane.Markdown(
                f"Error: {str(err)}. Please report this problem.")

        # Index map for ra (x-axis)
        sens_csd = csd(sens_container.time)
        index_map_ra = (sens_csd - self.lsd.lsd) * 360
        axis_name_ra = "RA [degrees]"

        # Index map for frequency (y-axis)
        index_map_f = np.linspace(800.0, 400.0, 1024, endpoint=False)
        axis_name_f = "Frequency [MHz]"

        # Apply data selections
        if self.polarization == self.mean_pol_text:
            sel_pol = np.where((sens_container.index_map["pol"] == "XX")
                               | (sens_container.index_map["pol"] == "YY"))[0]
            sens = np.squeeze(sens_container.measured[:, sel_pol])
            sens = np.squeeze(np.nanmean(sens, axis=1))
        else:
            sel_pol = np.where(
                sens_container.index_map["pol"] == self.polarization)[0]
            sens = np.squeeze(sens_container.measured[:, sel_pol])

        if self.flag_mask:
            sens = np.where(self._flags_mask(index_map_ra).T, np.nan, sens)

        # Set flagged data to nan
        sens = np.where(sens == 0, np.nan, sens)

        if self.mask_rfi:
            try:
                rfi_container = self.data.load_file(self.revision, self.lsd,
                                                    "rfi")
            except DataError as err:
                return panel.pane.Markdown(
                    f"Error: {str(err)}. Please report this problem.")
            rfi = np.squeeze(rfi_container.mask[:])

            # calculate percentage masked to print later
            rfi_percentage = round(np.count_nonzero(rfi) / rfi.size * 100)

            sens *= np.where(rfi, np.nan, 1)

        if self.divide_by_estimate:
            estimate = np.squeeze(sens_container.radiometer[:, sel_pol])
            if self.polarization == self.mean_pol_text:
                estimate = np.squeeze(np.nanmean(estimate, axis=1))
            estimate = np.where(estimate == 0, np.nan, estimate)
            sens = sens / estimate

        if self.transpose:
            sens = sens.T
            index_x = index_map_f
            index_y = index_map_ra
            axis_names = [axis_name_f, axis_name_ra]
            xlim, ylim = self.ylim, self.xlim
        else:
            index_x = index_map_ra
            index_y = index_map_f
            axis_names = [axis_name_ra, axis_name_f]
            xlim, ylim = self.xlim, self.ylim

        image_opts = {
            "clim": self.colormap_range,
            "logz": self.logarithmic_colorscale,
            "cmap": process_cmap("viridis", provider="matplotlib"),
            "colorbar": True,
            "xticks": [0, 60, 120, 180, 240, 300, 360],
        }
        if self.mask_rfi:
            image_opts["title"] = f"RFI mask: {rfi_percentage}%"

        overlay_opts = {
            "xlim": xlim,
            "ylim": ylim,
        }

        # Fill in missing data
        img = hv_image_with_gaps(index_x,
                                 index_y,
                                 sens,
                                 opts=image_opts,
                                 kdims=axis_names).opts(**overlay_opts)

        if self.serverside_rendering is not None:
            # set colormap
            cmap_inferno = copy.copy(matplotlib_cm.get_cmap("viridis"))

            # Set z-axis normalization (other possible values are 'eq_hist', 'cbrt').
            if self.logarithmic_colorscale:
                normalization = "log"
            else:
                normalization = "linear"

            # datashade/rasterize the image
            img = self.serverside_rendering(
                img,
                cmap=cmap_inferno,
                precompute=True,
                x_range=xlim,
                y_range=ylim,
                normalization=normalization,
                # TODO: set xticks like above
            )

        if self.mark_day_time:
            # Calculate the sun rise/set times on this sidereal day

            # Start and end times of the CSD
            start_time = csd_to_unix(self.lsd.lsd)
            end_time = csd_to_unix(self.lsd.lsd + 1)

            times, rises = chime.rise_set_times(
                skyfield_wrapper.ephemeris["sun"],
                start_time,
                end_time,
                diameter=-10,
            )
            sun_rise = 0
            sun_set = 0
            for t, r in zip(times, rises):
                if r:
                    sun_rise = (unix_to_csd(t) % 1) * 360
                else:
                    sun_set = (unix_to_csd(t) % 1) * 360

            # Highlight the day time data
            opts = {
                "color": "grey",
                "alpha": 0.5,
                "line_width": 1,
                "line_color": "black",
                "line_dash": "dashed",
            }

            span = hv.HSpan if self.transpose else hv.VSpan
            if sun_rise < sun_set:
                img *= span(sun_rise, sun_set).opts(**opts)
            else:
                img *= span(self.xlim[0], sun_set).opts(**opts)
                img *= span(sun_rise, self.xlim[-1]).opts(**opts)

        img.opts(
            # Fix height, but make width responsive
            height=self.height,
            responsive=True,
            bgcolor="lightgray",
            shared_axes=True,
        )

        return panel.Row(img, width_policy="max")