def _theta_plot_default(self): theta = self.theta nclasses = theta.shape[0] # create a plot data object and give it this data plot_data = ArrayPlotData() plot_data.set_data('classes', range(nclasses)) # create the plot plot = Plot(plot_data) # --- plot theta samples if self.theta_samples is not None: self._plot_samples(plot, plot_data) # --- plot values of theta plots = self._plot_theta_values(plot, plot_data) # --- adjust plot appearance plot.aspect_ratio = 1.6 if is_display_small() else 1.7 # adjust axis bounds y_high = theta.max() if self.theta_samples is not None: y_high = max(y_high, self.theta_samples.max()) plot.range2d = DataRange2D( low = (-0.2, 0.0), high = (nclasses-1+0.2, y_high*1.1) ) # create new horizontal axis label_axis = self._create_increment_one_axis( plot, 0., nclasses, 'bottom') label_axis.title = 'True classes' self._add_index_axis(plot, label_axis) # label vertical axis plot.value_axis.title = 'Probability' # add legend legend = Legend(component=plot, plots=plots, align="ur", border_padding=10) legend.tools.append(LegendTool(legend, drag_button="left")) legend.padding_right = -100 plot.overlays.append(legend) container = VPlotContainer(width=plot.width + 100, halign='left') plot.padding_bottom = 50 plot.padding_top = 10 plot.padding_left = 0 container.add(plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) return container
def _theta_plot_default(self): theta = self.theta nclasses = theta.shape[0] # create a plot data object and give it this data plot_data = ArrayPlotData() plot_data.set_data('classes', list(range(nclasses))) # create the plot plot = Plot(plot_data) # --- plot theta samples if self.theta_samples is not None: self._plot_samples(plot, plot_data) # --- plot values of theta plots = self._plot_theta_values(plot, plot_data) # --- adjust plot appearance plot.aspect_ratio = 1.6 if is_display_small() else 1.7 # adjust axis bounds y_high = theta.max() if self.theta_samples is not None: y_high = max(y_high, self.theta_samples.max()) plot.range2d = DataRange2D(low=(-0.2, 0.0), high=(nclasses - 1 + 0.2, y_high * 1.1)) # create new horizontal axis label_axis = self._create_increment_one_axis(plot, 0., nclasses, 'bottom') label_axis.title = 'True classes' self._add_index_axis(plot, label_axis) # label vertical axis plot.value_axis.title = 'Probability' # add legend legend = Legend(component=plot, plots=plots, align="ur", border_padding=10) legend.tools.append(LegendTool(legend, drag_button="left")) legend.padding_right = -100 plot.overlays.append(legend) container = VPlotContainer(width=plot.width + 100, halign='left') plot.padding_bottom = 50 plot.padding_top = 10 plot.padding_left = 0 container.add(plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) return container
def monitor_to_plotdata(it): ''' Parse a mcstas monitor file and convert it to a chaco plotdata object ''' header, data = parse_monitor(it) dtype = header['type'] if dtype.startswith('array_1d'): # 1d # populate with point data plotdata = ArrayPlotData() for i, name in enumerate(header['variables'].split()): plotdata[name] = array(map(lambda line: line[i], data), dtype='float64') # compute error bar value_low and value_high using I_err i, i_err = plotdata['I'], plotdata['I_err'] plotdata['value_error'] = i_err plotdata['value_low'] = i - i_err plotdata['value_high'] = i + i_err return (header, plotdata) if dtype.startswith('array_2d'): # 2d w, h = map(int, dtype[len('array_2d'):].strip('() ').split(',')) data = array(data[:h], dtype='float64') plotdata = ArrayPlotData(imagedata=data, imagedata_log=log(maximum(1, data))) return (header, plotdata) else: print('Skipping unknown type:', header['type']) return (header, None)
def test_selection_mask(self): plot_data = ArrayPlotData() plot = Plot(plot_data) arr = np.array([-2, -1, 1, 2]) plot_data.set_data("x", arr) plot_data.set_data("y", arr) splot = plot.plot(('x', 'y'), type='scatter')[0] tool = RectangularSelection( component=splot, selection_datasource=splot.index, metadata_name='selections', ) splot.tools.append(tool) # Set the cursor start and stop positions to be such # that the middle two points of the four possible are selected. cursor_start = splot.map_screen([-1.5, -1.5])[0] cursor_stop = splot.map_screen([1.5, 1.5])[0] self.mouse_down(interactor=tool, x=cursor_start[0], y=cursor_start[1]) self.mouse_move(interactor=tool, x=cursor_stop[0], y=cursor_stop[1]) self.mouse_up(interactor=tool, x=cursor_stop[0], y=cursor_stop[1]) expected_mask = [False, True, True, False] selection_mask = list(splot.index.metadata['selections']) self.assertEqual(expected_mask, selection_mask)
def _matrix_plot_container_default(self): matrix = np.nan_to_num(self.matrix) width = matrix.shape[0] # create a plot data object and give it this data plot_data = ArrayPlotData() plot_data.set_data("values", matrix) # create the plot plot = Plot(plot_data, origin=self.origin) img_plot = plot.img_plot("values", interpolation='nearest', xbounds=(0, width), ybounds=(0, width), colormap=self._create_colormap())[0] #### fix axes self._remove_grid_and_axes(plot) axis = self._create_increment_one_axis(plot, 0.5, width, 'bottom') self._add_value_axis(plot, axis) axis = self._create_increment_one_axis( plot, 0.5, width, 'left', ticks=[str(i) for i in range(width - 1, -1, -1)]) self._add_index_axis(plot, axis) #### tweak plot attributes self._set_title(plot) plot.aspect_ratio = 1. # padding [left, right, up, down] plot.padding = [0, 0, 25, 25] # create the colorbar, handing in the appropriate range and colormap colormap = img_plot.color_mapper colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range), color_mapper=colormap, plot=img_plot, orientation='v', resizable='v', width=20, padding=[0, 20, 0, 0]) colorbar.padding_top = plot.padding_top colorbar.padding_bottom = plot.padding_bottom # create a container to position the plot and the colorbar side-by-side container = HPlotContainer(use_backbuffer=True) container.add(plot) container.add(colorbar) container.bgcolor = 0xFFFFFF self.decorate_plot(container, self.matrix) return container
def load(self): data = ArrayPlotData() p = Plot(data=data, padding=100) X = linspace(0, 2 * pi) data.set_data('x0', X) data.set_data('y0', cos(X)) p.plot(('x0', 'y0')) self.container.add(p)
def _matrix_plot_container_default(self): matrix = np.nan_to_num(self.matrix) width = matrix.shape[0] # create a plot data object and give it this data plot_data = ArrayPlotData() plot_data.set_data("values", matrix) # create the plot plot = Plot(plot_data, origin=self.origin) img_plot = plot.img_plot("values", interpolation='nearest', xbounds=(0, width), ybounds=(0, width), colormap=self._create_colormap())[0] #### fix axes self._remove_grid_and_axes(plot) axis = self._create_increment_one_axis(plot, 0.5, width, 'bottom') self._add_value_axis(plot, axis) axis = self._create_increment_one_axis( plot, 0.5, width, 'left', ticks=[str(i) for i in range(width-1, -1, -1)]) self._add_index_axis(plot, axis) #### tweak plot attributes self._set_title(plot) plot.aspect_ratio = 1. # padding [left, right, up, down] plot.padding = [0, 0, 25, 25] # create the colorbar, handing in the appropriate range and colormap colormap = img_plot.color_mapper colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range), color_mapper=colormap, plot=img_plot, orientation='v', resizable='v', width=20, padding=[0, 20, 0, 0]) colorbar.padding_top = plot.padding_top colorbar.padding_bottom = plot.padding_bottom # create a container to position the plot and the colorbar side-by-side container = HPlotContainer(use_backbuffer=True) container.add(plot) container.add(colorbar) container.bgcolor = 0xFFFFFF self.decorate_plot(container, self.matrix) return container
def cmap_plot(self, z): from chaco.array_plot_data import ArrayPlotData from chaco.plot import Plot from chaco.default_colormaps import color_map_name_dict pd = ArrayPlotData() pd.set_data("cmapdata", z) p = Plot(pd, padding=0) p.img_plot("cmapdata", xbounds=(-25, 25), ybounds=(-25, 25), colormap=color_map_name_dict["hot"]) self.add(p) return pd
def cmap_plot(self, z): from chaco.array_plot_data import ArrayPlotData from chaco.plot import Plot from chaco.default_colormaps import color_map_name_dict pd = ArrayPlotData() pd.set_data('cmapdata', z) p = Plot(pd, padding=0) p.img_plot('cmapdata', xbounds=(-25, 25), ybounds=(-25, 25), colormap=color_map_name_dict['hot']) self.add(p) return pd
def test_selection_no_warning(self): plot_data = ArrayPlotData() arr = np.arange(4) plot_data.set_data("x", arr) plot_data.set_data("y", arr) plot = Plot(plot_data) renderer = plot.plot(('x', 'y'))[0] tool = RangeSelection(renderer) with warnings.catch_warnings(record=True) as w: tool.selection = np.array([2.0, 3.0]) self.assertEqual(w, []) # Accept tuples and lists and None tool.selection = (1.5, 3.5) tool.selection = [1.0, 2.0] tool.selection = None
def test_selecting_mouse_leave_clipping(self): # Regression test for #216. plot_data = ArrayPlotData() arr = np.arange(4.0) plot_data.set_data("x", arr) plot_data.set_data("y", arr) for origin in ('bottom left', 'top left', 'bottom right', 'top right'): for orientation in ('h', 'v'): for axis in ('index', 'value'): plot = Plot(plot_data, orientation=orientation, origin='top right') renderer = plot.plot(('x', 'y'))[0] renderer.bounds = [10, 20] tool = RangeSelection( renderer, left_button_selects=True, axis=axis, ) renderer.tools.append(tool) low_x, low_y = plot.position high_x = low_x + renderer.bounds[0] - 1 high_y = low_y + renderer.bounds[1] - 1 cx = 5 cy = 5 bounds = ( (low_x - 1, low_y), (high_x + 1, low_y), (low_x, low_y - 1), (low_x, high_y + 1), ) for x, y in bounds: self.mouse_down(tool, x=cx, y=cy) self.mouse_leave(tool, x=x, y=y) selection = tool.selection self.assertTrue(selection[0] <= selection[1]) self.mouse_up(tool, x=x, y=y)
def test_selection_no_warning(self): plot_data = ArrayPlotData() arr = np.arange(4) plot_data.set_data("x", arr) plot_data.set_data("y", arr) plot = Plot(plot_data) renderer = plot.plot(('x', 'y'))[0] tool = RangeSelection(renderer) with warnings.catch_warnings(record=True) as w: # Ignore warnings coming from Traits warnings.filterwarnings("ignore", 'elementwise == comparison failed') tool.selection = np.array([2.0, 3.0]) self.assertEqual(w, []) # Accept tuples and lists and None tool.selection = (1.5, 3.5) tool.selection = [1.0, 2.0] tool.selection = None
def test_selecting_mouse_leave_clipping(self): # Regression test for #216. plot_data = ArrayPlotData() arr = np.arange(4.0) plot_data.set_data("x", arr) plot_data.set_data("y", arr) for origin in ('bottom left', 'top left', 'bottom right', 'top right'): for orientation in ('h', 'v'): for axis in ('index', 'value'): plot = Plot( plot_data, orientation=orientation, origin='top right' ) renderer = plot.plot(('x', 'y'))[0] renderer.bounds = [10, 20] tool = RangeSelection( renderer, left_button_selects=True, axis=axis, ) renderer.tools.append(tool) low_x, low_y = plot.position high_x = low_x + renderer.bounds[0] - 1 high_y = low_y + renderer.bounds[1] - 1 cx = 5 cy = 5 bounds = ( (low_x - 1, low_y), (high_x + 1, low_y), (low_x, low_y - 1), (low_x, high_y + 1), ) for x, y in bounds: self.mouse_down(tool, x=cx, y=cy) self.mouse_leave(tool, x=x, y=y) selection = tool.selection self.assertTrue(selection[0] <= selection[1]) self.mouse_up(tool, x=x, y=y)
def test_selection_no_warning(self): plot_data = ArrayPlotData() arr = np.arange(4) plot_data.set_data("x", arr) plot_data.set_data("y", arr) plot = Plot(plot_data) renderer = plot.plot(('x', 'y'))[0] tool = RangeSelection(renderer) with warnings.catch_warnings(record=True) as w: # Ignore warnings coming from any package other than Chaco warnings.filterwarnings( "ignore", module="(?!chaco)", ) tool.selection = np.array([2.0, 3.0]) self.assertEqual(w, []) # Accept tuples and lists and None tool.selection = (1.5, 3.5) tool.selection = [1.0, 2.0] tool.selection = None
def _load_image(self, path): self.container = self._container_factory() im = Image.open(path) # oim = array(im) im = im.convert('L') odim = ndim = array(im) pd = ArrayPlotData() pd.set_data('img', odim) plot = Plot(data=pd, padding=[30, 5, 5, 30], default_origin='top left') img_plot = plot.img_plot('img', colormap=color_map_name_dict[self.colormap_name_1] )[0] self.add_inspector(img_plot) self.add_tools(img_plot) self.oplot = plot self.container.add(self.oplot) # self.container.add(self.plot) self.container.request_redraw()
def setup_images(self, n, wh): self.container._components = [] self.plotdata = plotdata = ArrayPlotData() for i in range(n): plot = Plot(plotdata, padding=0, default_origin="top left") name = 'imagedata{:03d}'.format(i) plotdata.set_data(name, ones(wh)) plot.img_plot(name, colormap=hot) self.container.add(plot) self.container.request_redraw()
def test_restrict_to_data_with_empty_source(self): # Regression test for #214. plot_data = ArrayPlotData() plot = Plot(plot_data) arr = np.arange(4.0) plot_data.set_data("x", arr) plot_data.set_data("y", arr) plot_data.set_data("z", np.array([], np.float64)) plot.plot(('x', 'y')) plot.plot(('z', 'z')) tool = PanTool(plot, restrict_to_data=True) plot.tools.append(tool) x_range = plot.x_mapper.range y_range = plot.y_mapper.range x_bounds = (x_range.low, x_range.high) y_bounds = (y_range.low, y_range.high) self.mouse_down(tool, 0.0, 0.0) self.mouse_move(interactor=tool, x=1.0, y=1.0) self.mouse_up(interactor=tool, x=1.0, y=1.0) self.assertEqual((x_range.low, x_range.high), x_bounds) self.assertEqual((y_range.low, y_range.high), y_bounds)
def plotFFT(widget): """ Determine fft of signals in selected widget """ print("plotFFT") model = "" for (modelNumber, modelName, variableName), data in widget.getData(): # print "var:", var, "data: ", data minVal = (0, float("inf")) maxVal = (0, float("-inf")) # for time, value in data: # Get data from data array: time = numpy.array(list((x for x, _ in data))) # data[0] values = numpy.array(list((x for _, x in data))) (Tmin, Tmax, N) = getFFTtimeRange(time) (timeInRange, valuesInRange) = getValuesInRange(time, values, Tmin, Tmax) # Compute fft: A=A(f) (f, A) = fft(timeInRange, valuesInRange, N) # Open new plot tab: import plotWidget window = widget.createNewWindow() container = plotWidget.plotContainer(window) plotWidget = plotWidget.PlotWidget(container) container.setPlotWidget(plotWidget) # Create the plot plotdata = ArrayPlotData(x=f, y=A, border_visible=True, overlay_border=True) plot = Plot(plotdata, title="FFT") # Plot(plotdata, title="FFT") barPlot = plot.plot(("x", "y"), type="bar", bar_width=0.1, color="blue")[0] # scatterPlot = plot.plot(("x", "y"), type="scatter", color="blue")[0] # Attach some tools to the plot plot.tools.append(PanTool(plot)) plot.overlays.append(ZoomTool(plot)) # Activate Plot: plotWidget.setPlot(plot) container.setPlotWidget(plotWidget) layout = QtGui.QBoxLayout(QtGui.QBoxLayout.TopToBottom) layout.addWidget(container) window.setLayout(layout) window.show()
def initialize_plot(self): data = self.data_model container = self.plot_container self._series = [] self._plots = {} index, rr = None, None for i, (a, title) in enumerate(( ('water_head', 'Head'), ('adjusted_water_head', 'Adj. Head'), # ('temp', 'Temp.'), # ('water_level_elevation', 'Elev.') )): plot = Plot( data=ArrayPlotData(**{ 'x': data.x, a: getattr(data, a) }), padding=[70, 10, 10, 10], # resizable='h', # bounds=(1, 125) ) if index is None: index = plot.index_mapper rr = plot.index_range else: plot.index_mapper = index plot.index_range = rr series = plot.plot(('x', a))[0] plot.plot(('x', a), marker_size=1.5, type='scatter') dt = DataTool(plot=series, component=plot, normalize_time=False, use_date_str=True) dto = DataToolOverlay(component=series, tool=dt) series.tools.append(dt) series.overlays.append(dto) plot.y_axis.title = title if i != 0: plot.x_axis.visible = False else: zoom = ZoomTool(plot, tool_mode="range", axis='index', color=(0, 1, 0, 0.5), enable_wheel=False, always_on=False) plot.overlays.append(zoom) tool = RangeSelection(series, left_button_selects=True, listeners=[self]) self._tool = tool series.tools.append(tool) # series.active_tool = tool # plot.x_axis.title = 'Time' bottom_axis = PlotAxis( plot, orientation="bottom", # mapper=xmapper, tick_generator=ScalesTickGenerator( scale=CalendarScaleSystem())) plot.x_axis = bottom_axis plot.padding_bottom = 50 series.overlays.append(RangeSelectionOverlay(component=series)) container.add(plot) self._series.append(series) self._plots[a] = plot container.invalidate_and_redraw()
def load(self, path): parser = ElementTree(file=open(path, 'r')) circles = parser.find('circles') outline = parser.find('outline') bb = outline.find('bounding_box') bs = bb.find('width'), bb.find('height') w, h = [float(b.text) for b in bs] use_label = parser.find('use_label') if use_label is not None: use_label = to_bool(use_label.text.strip()) else: use_label = True data = ArrayPlotData() p = Plot(data=data, padding=100) p.x_grid.visible = False p.y_grid.visible = False p.x_axis.visible = False p.y_axis.visible = False p.x_axis.title = 'X cm' p.y_axis.title = 'Y cm' # font = 'modern 22' # p.x_axis.title_font = font # p.x_axis.tick_label_font = font # p.y_axis.title_font = font # p.y_axis.tick_label_font = font # p.x_axis_visible = False # p.y_axis_visible = False p.index_range.low_setting = -w / 2 p.index_range.high_setting = w / 2 p.value_range.low_setting = -h / 2 p.value_range.high_setting = h / 2 thetas = linspace(0, 2 * pi) radius = circles.find('radius').text radius = float(radius) face_color = circles.find('face_color') if face_color is not None: face_color = face_color.text else: face_color = 'white' labels = [] for i, pp in enumerate(circles.findall('point')): x, y, l = pp.find('x').text, pp.find('y').text, pp.find('label').text # print i, pp, x, y # load hole specific attrs r = pp.find('radius') if r is None: r = radius else: r = float(r.text) fc = pp.find('face_color') if fc is None: fc = face_color else: fc = fc.text x, y = list(map(float, (x, y))) xs = x + r * sin(thetas) ys = y + r * cos(thetas) xn, yn = 'px{:03d}'.format(i), 'py{:03d}'.format(i) data.set_data(xn, xs) data.set_data(yn, ys) plot = p.plot((xn, yn), face_color=fc, type='polygon')[0] labels.append((x, y, l)) # if use_label: # label = myDataLabel(component=plot, # data_point=(x, y), # label_text=l, # bgcolor='transparent') # plot.overlays.append(label) if use_label: p.overlays.append(LabelsOverlay(component=plot, labels=labels)) self.container.add(p) self.container.invalidate_and_redraw()
def _theta_plot_default(self): theta = self.theta nannotators = theta.shape[0] samples = self.theta_samples # plot data object plot_data = ArrayPlotData() # create the plot plot = Plot(plot_data) # --- plot theta as vertical dashed lines # add vertical lines extremes plot_data.set_data('line_extr', [0., 1.]) for k in range(nannotators): name = self._theta_name(k) plot_data.set_data(name, [theta[k], theta[k]]) plots = {} for k in range(nannotators): name = self._theta_name(k) line_plot = plot.plot( (name, 'line_extr'), line_width = 2., color = get_annotator_color(k), line_style = 'dash', name = name ) plots[name] = line_plot # --- plot samples as distributions if samples is not None: bins = np.linspace(0., 1., 100) max_hist = 0. for k in range(nannotators): name = self._theta_name(k) + '_distr_' hist, x = np.histogram(samples[:,k], bins=bins) hist = hist / float(hist.sum()) max_hist = max(max_hist, hist.max()) # make "bars" out of histogram values y = np.concatenate(([0], np.repeat(hist, 2), [0])) plot_data.set_data(name+'x', np.repeat(x, 2)) plot_data.set_data(name+'y', y) for k in range(nannotators): name = self._theta_name(k) + '_distr_' plot.plot((name+'x', name+'y'), line_width = 2., color = get_annotator_color(k) ) # --- adjust plot appearance plot.aspect_ratio = 1.6 if is_display_small() else 1.7 plot.padding = [20,0,10,40] # adjust axis bounds x_low, x_high = theta.min(), theta.max() y_low, y_high = 0., 1. if samples is not None: x_high = max(x_high, samples.max()) x_low = min(x_low, samples.min()) y_high = max_hist plot.range2d = DataRange2D( low = (max(x_low-0.05, 0.), y_low), high = (min(x_high*1.1, 1.), min(y_high*1.1, 1.)) ) # label axes plot.value_axis.title = 'Probability' plot.index_axis.title = 'Theta' # add legend legend = Legend(component=plot, plots=plots, align="ul", padding=5) legend.tools.append(LegendTool(legend, drag_button="left")) plot.overlays.append(legend) container = VPlotContainer() container.add(plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) self._set_title(plot) return container
def _plot_container_default(self): data = self.posterior nannotations, nclasses = data.shape # create a plot data object plot_data = ArrayPlotData() plot_data.set_data("values", data) # create the plot plot = Plot(plot_data, origin=self.origin) img_plot = plot.img_plot("values", interpolation='nearest', xbounds=(0, nclasses), ybounds=(0, nannotations), colormap=self._create_colormap())[0] ndisp = 55 img_plot.y_mapper.range.high = ndisp img_plot.y_mapper.domain_limits=((0, nannotations)) self._set_title(plot) plot.padding_top = 80 # create x axis for labels label_axis = self._create_increment_one_axis(plot, 0.5, nclasses, 'top') label_axis.title = 'classes' self._add_index_axis(plot, label_axis) plot.y_axis.title = 'items' # tweak plot aspect goal_aspect_ratio = 2.0 plot_width = (goal_aspect_ratio * self.plot_height * nclasses / ndisp) self.plot_width = min(max(plot_width, 200), 400) plot.aspect_ratio = self.plot_width / self.plot_height # add colorbar colormap = img_plot.color_mapper colorbar = ColorBar(index_mapper = LinearMapper(range=colormap.range), color_mapper = colormap, plot = img_plot, orientation = 'v', resizable = '', width = 15, height = 250) colorbar.padding_top = plot.padding_top colorbar.padding_bottom = int(self.plot_height - colorbar.height - plot.padding_top) colorbar.padding_left = 0 colorbar.padding_right = 30 # create a container to position the plot and the colorbar side-by-side container = HPlotContainer(use_backbuffer=True) container.add(plot) container.add(colorbar) container.bgcolor = 0xFFFFFF # light gray: 0xEEEEEE # add pan tools img_plot.tools.append(PanTool(img_plot, constrain=True, constrain_direction="y", speed=7.)) self.decorate_plot(container, self.posterior) self.plot_posterior = plot return container
def load(self, path): parser = ElementTree(file=open(path, 'r')) circles = parser.find('circles') outline = parser.find('outline') bb = outline.find('bounding_box') bs = bb.find('width'), bb.find('height') w, h = map(lambda b: float(b.text), bs) use_label = parser.find('use_label') if use_label is not None: use_label = to_bool(use_label.text.strip()) else: use_label = True data = ArrayPlotData() p = Plot(data=data, padding=100) p.x_grid.visible = False p.y_grid.visible = False p.x_axis.title = 'X cm' p.y_axis.title = 'Y cm' font = 'modern 22' p.x_axis.title_font = font p.x_axis.tick_label_font = font p.y_axis.title_font = font p.y_axis.tick_label_font = font # p.x_axis_visible = False # p.y_axis_visible = False p.index_range.low_setting = -w / 2 p.index_range.high_setting = w / 2 p.value_range.low_setting = -h / 2 p.value_range.high_setting = h / 2 thetas = linspace(0, 2 * pi) radius = circles.find('radius').text radius = float(radius) face_color = circles.find('face_color') if face_color is not None: face_color = face_color.text else: face_color = 'white' for i, pp in enumerate(circles.findall('point')): x, y, l = pp.find('x').text, pp.find('y').text, pp.find( 'label').text # print i, pp, x, y # load hole specific attrs r = pp.find('radius') if r is None: r = radius else: r = float(r.text) fc = pp.find('face_color') if fc is None: fc = face_color else: fc = fc.text x, y = map(float, (x, y)) xs = x + r * sin(thetas) ys = y + r * cos(thetas) xn, yn = 'px{:03n}'.format(i), 'py{:03n}'.format(i) data.set_data(xn, xs) data.set_data(yn, ys) plot = p.plot( (xn, yn), face_color=fc, type='polygon', )[0] if use_label: label = myDataLabel( component=plot, data_point=(x, y), label_text=l, bgcolor='transparent', ) plot.overlays.append(label) self.container.add(p)
def load(self, path): parser = ElementTree(file=open(path, 'r')) circles = parser.find('circles') outline = parser.find('outline') bb = outline.find('bounding_box') bs = bb.find('width'), bb.find('height') w, h = map(lambda b:float(b.text), bs) data = ArrayPlotData() p = Plot(data=data) p.x_grid.visible = False p.y_grid.visible = False p.index_range.low_setting = -w / 2 p.index_range.high_setting = w / 2 p.value_range.low_setting = -h / 2 p.value_range.high_setting = h / 2 thetas = linspace(0, 2 * pi) radius = circles.find('radius').text radius = float(radius) face_color = circles.find('face_color') if face_color is not None: face_color = face_color.text else: face_color = 'white' for i, pp in enumerate(circles.findall('point')): x, y, l = pp.find('x').text, pp.find('y').text, pp.find('label').text # load hole specific attrs r = pp.find('radius') if r is None: r = radius else: r = float(r.text) fc = pp.find('face_color') if fc is None: fc = face_color else: fc = fc.text x, y = map(float, (x, y)) xs = x + r * sin(thetas) ys = y + r * cos(thetas) xn, yn = 'px{:03n}'.format(i), 'py{:03n}'.format(i) data.set_data(xn, xs) data.set_data(yn, ys) plot = p.plot((xn, yn), face_color=fc, type='polygon', )[0] label = myDataLabel(component=plot, data_point=(x, y), label_text=l, bgcolor=fc ) plot.overlays.append(label) self.container.add(p)
def _theta_plot_default(self): """Create plot of theta parameters.""" # We plot both the thetas and the samples from the posterior; if the # latter are not defined, the corresponding ArrayPlotData names # should be set to an empty list, so that they are not displayed theta = self.model.theta theta_len = theta.shape[0] # create the plot data if not self.theta_plot_data: self.theta_plot_data = ArrayPlotData() self._update_plot_data() # create the plot theta_plot = Plot(self.theta_plot_data) for idx in range(theta_len): # candle plot summarizing samples over the posterior theta_plot.candle_plot((_w_idx('index', idx), _w_idx('min', idx), _w_idx('barmin', idx), _w_idx('avg', idx), _w_idx('barmax', idx), _w_idx('max', idx)), color = get_annotator_color(idx), bar_line_color = "black", stem_color = "blue", center_color = "red", center_width = 2) # plot of raw samples theta_plot.plot((_w_idx('ysamples', idx), _w_idx('xsamples', idx)), type='scatter', color='black', marker='dot', line_width=0.5, marker_size=1) # plot current parameters theta_plot.plot((_w_idx('y', idx), _w_idx('x', idx)), type='scatter', color=get_annotator_color(idx), marker='plus', marker_size=8, line_width=2) # adjust axis bounds theta_plot.range2d = self._compute_range2d() # remove horizontal grid and axis theta_plot.underlays = [theta_plot.x_grid, theta_plot.y_axis] # create new horizontal axis label_list = [str(i) for i in range(theta_len)] label_axis = LabelAxis( theta_plot, orientation = 'bottom', positions = list(range(1, theta_len+1)), labels = label_list, label_rotation = 0 ) # use a FixedScale tick generator with a resolution of 1 label_axis.tick_generator = ScalesTickGenerator(scale=FixedScale(1.)) theta_plot.index_axis = label_axis theta_plot.underlays.append(label_axis) theta_plot.padding = 25 theta_plot.padding_left = 40 theta_plot.aspect_ratio = 1.0 container = VPlotContainer() container.add(theta_plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) self._set_title(theta_plot) return container
def _plot_container_default(self): data = self.posterior nannotations, nclasses = data.shape # create a plot data object plot_data = ArrayPlotData() plot_data.set_data("values", data) # create the plot plot = Plot(plot_data, origin=self.origin) img_plot = plot.img_plot("values", interpolation='nearest', xbounds=(0, nclasses), ybounds=(0, nannotations), colormap=self._create_colormap())[0] ndisp = 55 img_plot.y_mapper.range.high = ndisp img_plot.y_mapper.domain_limits = ((0, nannotations)) self._set_title(plot) plot.padding_top = 80 # create x axis for labels label_axis = self._create_increment_one_axis(plot, 0.5, nclasses, 'top') label_axis.title = 'classes' self._add_index_axis(plot, label_axis) plot.y_axis.title = 'items' # tweak plot aspect goal_aspect_ratio = 2.0 plot_width = (goal_aspect_ratio * self.plot_height * nclasses / ndisp) self.plot_width = min(max(plot_width, 200), 400) plot.aspect_ratio = self.plot_width / self.plot_height # add colorbar colormap = img_plot.color_mapper colorbar = ColorBar(index_mapper=LinearMapper(range=colormap.range), color_mapper=colormap, plot=img_plot, orientation='v', resizable='', width=15, height=250) colorbar.padding_top = plot.padding_top colorbar.padding_bottom = int(self.plot_height - colorbar.height - plot.padding_top) colorbar.padding_left = 0 colorbar.padding_right = 30 # create a container to position the plot and the colorbar side-by-side container = HPlotContainer(use_backbuffer=True) container.add(plot) container.add(colorbar) container.bgcolor = 0xFFFFFF # light gray: 0xEEEEEE # add pan tools img_plot.tools.append( PanTool(img_plot, constrain=True, constrain_direction="y", speed=7.)) self.decorate_plot(container, self.posterior) self.plot_posterior = plot return container
def plotEigenvalues(model, gui): ''' This function calculates the linearization of model as well as additional information (eigenvalues, damping ...) if this was not done before. It opens a new plotting tab and displays this information ''' if model is None: print("No model selected!") return # Check if already linearized, do so otherwise: try: data = model.pluginData["EigenvalueAnalysis"] except: print "Performing linearization" data = EigenvalueAnalysis() data._performLinearization(model) model.pluginData["EigenvalueAnalysis"] = data # Open new plotting tab: parent = QtGui.QApplication.activeWindow() widgetContainer = parent._newPlotContainer() widget = widgetContainer.activeWidget # Plot the data: x = numpy.real(data.eigenvalues[:]) y = numpy.imag(data.eigenvalues[:]) plotdata = ArrayPlotData(x=x, y=y, border_visible=True, overlay_border=True) plot = Plot(plotdata, title="Eigenvalues of %s" % data.modelName) scatter = plot.plot(("x", "y"), type="scatter", color="blue")[0] # Attach some tools to the plot plot.tools.append(PanTool(plot)) plot.overlays.append(ZoomTool(plot)) # Add axis titles: x_axis = PlotAxis(orientation="bottom") x_axis.mapper = plot.index_mapper x_axis.title = "real part" plot.underlays.append(x_axis) y_axis = PlotAxis(orientation="left") y_axis.mapper = plot.value_mapper y_axis.title = "imag. part" plot.underlays.append(y_axis) # Attach the inspector and its overlay scatter.tools.append(ScatterInspector(scatter)) overlay = myScatterInspectorOverlay(scatter, hover_color="red", hover_marker_size=6, selection_marker_size=6, selection_color="yellow", selection_outline_color="purple", selection_line_width=3, stateNames=data.StateNames, eigenVectors=data.eigenvectors, frequencies=data.frequencies, damping=data.damping, observability=data.observability, controllability=data.controllability) scatter.overlays.append(overlay) # Activate Plot: widget.setPlot(plot) widgetContainer.activeWidget = widget
def plotFFTPlusTHD(widget): """ Determine fft of signals in selected widget and calculate Total harmonic disturbance""" print("plotFFT and Total Harmonic Disturbance") model = "" for (modelNumber, modelName, variableName), data in widget.getData(): # print "var:", var, "data: ", data minVal = (0, float("inf")) maxVal = (0, float("-inf")) # for time, value in data: # Get data from data array: time = numpy.array(list((x for x, _ in data))) # data[0] values = numpy.array(list((x for _, x in data))) unit = "" (Tmin, Tmax, N) = getFFTtimeRange(time) (timeInRange, valuesInRange) = getValuesInRange(time, values, Tmin, Tmax) # Compute fft: A=A(f) (f, A) = fft(timeInRange, valuesInRange, N) #******* START THD CALCULATION ************* # Estimate fundamental frequency: maxindex = A.argmax() estimation = f[maxindex] def getExFreq(estimation): return estimation """ Inquire im measured fundamental frequency is correct: """ ''' import guidata guidata.qapplication() import guidata.dataset.dataitems as di import guidata.dataset.datatypes as dt class Processing(dt.DataSet): """ Fundamental Frequency """ correctedFreq = di.FloatItem("fundamental frequency [Hz]", default=estimation) param = Processing() okPressed = param.edit() if okPressed: return param.correctedFreq else: # Cancel button pressed return estimation ''' # Ask for a better fundamental frequency exFreq = max(0, min(f.max(), getExFreq(estimation))) # Check if we have at least one harmonic: if exFreq > 0.5 * f.max(): print "THD calculation not possible, extend frequency window to at least 2*fundamental frequency" THD = 999 else: # Get 5% window around fundamental frequency and calculate power: mask = (f > exFreq * 0.975) & (f < exFreq * 1.025) print "Calculating fundamental energy from points: frequency=%s, Amplitude=%s" % ( f[mask], A[mask]) P1 = numpy.vdot(A[mask], A[mask]) # squared amplitude PH = 0 # Sum up the Power of all harmonic frequencies in spectrum: noHarmonics = numpy.int(numpy.floor(f.max() / exFreq)) for i in range(noHarmonics - 1): mask = (f > (i + 2) * exFreq * 0.975) & (f < (i + 2) * exFreq * 1.025) PH = PH + (numpy.vdot(A[mask], A[mask])) # squared amplitude THD = PH / P1 * 100 #******* END THD CALCULATION ************* # Open new plot tab: import plotWidget window = widget.createNewWindow() container = plotWidget.plotContainer(window) plotWidget = plotWidget.PlotWidget(container) container.setPlotWidget(plotWidget) # Plot data plotdata = ArrayPlotData(x=f, y=A, border_visible=True, overlay_border=True) plot = Plot(plotdata, title="FFT") # Plot(plotdata, title="FFT") barPlot = plot.plot(("x", "y"), type="bar", bar_width=0.3, color="blue")[0] # Attach some tools to the plot plot.tools.append(PanTool(plot)) plot.overlays.append(ZoomTool(plot)) # Activate Plot: plotWidget.setPlot(plot) if THD != 999: thdLabel = DataLabel( component=plotWidget.plot, data_point=(f[A.argmax()], A.max()), label_position="bottom right", padding_bottom=20, marker_color="transparent", marker_size=8, marker="circle", arrow_visible=False, label_format=str( 'THD = %.4g percent based on %d harmonics of the %.4g Hz frequency' % (THD, noHarmonics, exFreq))) plotWidget.plot.overlays.append(thdLabel) container.setPlotWidget(plotWidget) layout = QtGui.QBoxLayout(QtGui.QBoxLayout.TopToBottom) layout.addWidget(container) window.setLayout(layout) window.show()