def make_colorbar(self, plot, width=30, padding=20, orientation='v', resizable='v'): cm = gray(DataRange1D()) lm = LinearMapper() colorbar = ColorBar(orientation=orientation, resizable=resizable, width=width, padding=padding, index_mapper=lm, color_mapper=cm) if plot is not None: colorbar.trait_set(index_mapper=LinearMapper(range=plot.color_mapper.range), color_mapper=plot.color_mapper, plot=plot) return colorbar
def make_colorbar(self, plot, width=30, padding=20, orientation='v', resizable='v'): cm = gray(DataRange1D()) lm = LinearMapper() colorbar = ColorBar(orientation=orientation, resizable=resizable, width=width, padding=padding, index_mapper=lm, color_mapper=cm) if plot is not None: colorbar.trait_set( index_mapper=LinearMapper(range=plot.color_mapper.range), color_mapper=plot.color_mapper, plot=plot) return colorbar
def create_plot(self): if hasattr(self.value, 'shadows'): color_gen = color_generator() shadowcolors = {} for shadow in self.value.shadows: shadowcolors[shadow] = color_gen.next() container_class = { 'h': HPlotContainer, 'v': VPlotContainer }[self.orientation] container = container_class(spacing=15, padding=15, bgcolor='transparent') container.fill_padding = True container.bgcolor = (236 / 255.0, 233 / 255.0, 216 / 255.0) if self.show_all: self.plot_items = self.value.keys() if len(self.plot_items) > 0: plot_configs = [] for (plot_num, var_name) in enumerate(self.plot_items): if not (isinstance(self.value[var_name], ndarray) and \ len(self.value[var_name].shape) == 1): continue plot_configs.append( PlotConfig(x=var_name + '_index', y=var_name, type='Line', number=plot_num)) self.plot_configs = plot_configs if len(self.plot_configs) > 0: number_to_plots = {} for plot_config in self.plot_configs: plotlist = number_to_plots.get(plot_config.number, []) plotlist.append(plot_config) number_to_plots[plot_config.number] = plotlist keys = number_to_plots.keys() keys.sort() container_list = [number_to_plots[number] for number in keys] for plot_group in container_list: context_adapter = PlotDataContextAdapter(context=self.value) plot = Plot(context_adapter) plot.padding = 15 plot.padding_left = 35 plot.padding_bottom = 30 plot.spacing = 15 plot.border_visible = True for plot_item in plot_group: if len(self.value[plot_item.y].shape) == 2: color_range = DataRange1D( low=min(self.value[plot_item.y]), high=max(self.value[plot_item.y])) plot.img_plot(plot_item.y, colormap=gray(color_range), name=plot_item.y) else: plot_type = { 'Line': 'line', 'Scatter': 'scatter' }[plot_item.type] plot.plot( (plot_item.x, plot_item.y), name=plot_item.x + " , " + plot_item.y, color=(.7, .7, .7), type=plot_type, ) if plot.index_axis.title != '': plot.index_axis.title = plot.index_axis.title + ', ' + plot_item.x else: plot.index_axis.title = plot_item.x if plot.value_axis.title != '': plot.value_axis.title = plot.value_axis.title + ', ' + plot_item.y else: plot.value_axis.title = plot_item.y if self.view_shadows and hasattr( self.value, 'shadows'): self.generate_shadow_plots(plot, shadowcolors, plot_item, plot_type) plot.tools.append(PanTool(plot)) container.add(plot) self.plot = container
def create_plot(self): if hasattr(self.value, 'shadows'): color_gen = color_generator() shadowcolors = {} for shadow in self.value.shadows: shadowcolors[shadow] = color_gen.next() container_class = {'h' : HPlotContainer, 'v' : VPlotContainer}[self.orientation] container = container_class(spacing=15, padding=15, bgcolor = 'transparent') container.fill_padding = True container.bgcolor=(236/255.0, 233/255.0, 216/255.0) if self.show_all: self.plot_items = self.value.keys() if len(self.plot_items)>0: plot_configs = [] for (plot_num, var_name) in enumerate(self.plot_items): if not (isinstance(self.value[var_name], ndarray) and \ len(self.value[var_name].shape) == 1): continue plot_configs.append(PlotConfig(x=var_name + '_index', y=var_name, type='Line', number=plot_num)) self.plot_configs = plot_configs if len(self.plot_configs)>0: number_to_plots = {} for plot_config in self.plot_configs: plotlist = number_to_plots.get(plot_config.number, []) plotlist.append(plot_config) number_to_plots[plot_config.number] = plotlist keys = number_to_plots.keys() keys.sort() container_list = [number_to_plots[number] for number in keys] for plot_group in container_list: context_adapter = PlotDataContextAdapter(context=self.value) plot = Plot(context_adapter) plot.padding = 15 plot.padding_left=35 plot.padding_bottom = 30 plot.spacing=15 plot.border_visible = True for plot_item in plot_group: if len(self.value[plot_item.y].shape) == 2: color_range = DataRange1D(low=min(self.value[plot_item.y]), high=max(self.value[plot_item.y])) plot.img_plot(plot_item.y, colormap=gray(color_range), name=plot_item.y) else: plot_type = {'Line':'line', 'Scatter':'scatter'}[plot_item.type] plot.plot((plot_item.x, plot_item.y), name=plot_item.x + " , " + plot_item.y, color=(.7, .7, .7), type=plot_type,) if plot.index_axis.title != '': plot.index_axis.title = plot.index_axis.title + ', ' + plot_item.x else: plot.index_axis.title = plot_item.x if plot.value_axis.title != '': plot.value_axis.title = plot.value_axis.title + ', ' + plot_item.y else: plot.value_axis.title = plot_item.y if self.view_shadows and hasattr(self.value, 'shadows'): self.generate_shadow_plots(plot, shadowcolors, plot_item, plot_type) plot.tools.append(PanTool(plot)) container.add(plot) self.plot = container