def _theta_plot_default(self): theta = self.theta nclasses = theta.shape[0] # create a plot data object and give it this data plot_data = ArrayPlotData() plot_data.set_data('classes', range(nclasses)) # create the plot plot = Plot(plot_data) # --- plot theta samples if self.theta_samples is not None: self._plot_samples(plot, plot_data) # --- plot values of theta plots = self._plot_theta_values(plot, plot_data) # --- adjust plot appearance plot.aspect_ratio = 1.6 if is_display_small() else 1.7 # adjust axis bounds y_high = theta.max() if self.theta_samples is not None: y_high = max(y_high, self.theta_samples.max()) plot.range2d = DataRange2D( low = (-0.2, 0.0), high = (nclasses-1+0.2, y_high*1.1) ) # create new horizontal axis label_axis = self._create_increment_one_axis( plot, 0., nclasses, 'bottom') label_axis.title = 'True classes' self._add_index_axis(plot, label_axis) # label vertical axis plot.value_axis.title = 'Probability' # add legend legend = Legend(component=plot, plots=plots, align="ur", border_padding=10) legend.tools.append(LegendTool(legend, drag_button="left")) legend.padding_right = -100 plot.overlays.append(legend) container = VPlotContainer(width=plot.width + 100, halign='left') plot.padding_bottom = 50 plot.padding_top = 10 plot.padding_left = 0 container.add(plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) return container
def _theta_plot_default(self): theta = self.theta nclasses = theta.shape[0] # create a plot data object and give it this data plot_data = ArrayPlotData() plot_data.set_data('classes', list(range(nclasses))) # create the plot plot = Plot(plot_data) # --- plot theta samples if self.theta_samples is not None: self._plot_samples(plot, plot_data) # --- plot values of theta plots = self._plot_theta_values(plot, plot_data) # --- adjust plot appearance plot.aspect_ratio = 1.6 if is_display_small() else 1.7 # adjust axis bounds y_high = theta.max() if self.theta_samples is not None: y_high = max(y_high, self.theta_samples.max()) plot.range2d = DataRange2D(low=(-0.2, 0.0), high=(nclasses - 1 + 0.2, y_high * 1.1)) # create new horizontal axis label_axis = self._create_increment_one_axis(plot, 0., nclasses, 'bottom') label_axis.title = 'True classes' self._add_index_axis(plot, label_axis) # label vertical axis plot.value_axis.title = 'Probability' # add legend legend = Legend(component=plot, plots=plots, align="ur", border_padding=10) legend.tools.append(LegendTool(legend, drag_button="left")) legend.padding_right = -100 plot.overlays.append(legend) container = VPlotContainer(width=plot.width + 100, halign='left') plot.padding_bottom = 50 plot.padding_top = 10 plot.padding_left = 0 container.add(plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) return container
def _theta_plot_default(self): """Create plot of theta parameters.""" # We plot both the thetas and the samples from the posterior; if the # latter are not defined, the corresponding ArrayPlotData names # should be set to an empty list, so that they are not displayed theta = self.model.theta theta_len = theta.shape[0] # create the plot data if not self.theta_plot_data: self.theta_plot_data = ArrayPlotData() self._update_plot_data() # create the plot theta_plot = Plot(self.theta_plot_data) for idx in range(theta_len): # candle plot summarizing samples over the posterior theta_plot.candle_plot((_w_idx('index', idx), _w_idx('min', idx), _w_idx('barmin', idx), _w_idx('avg', idx), _w_idx('barmax', idx), _w_idx('max', idx)), color = get_annotator_color(idx), bar_line_color = "black", stem_color = "blue", center_color = "red", center_width = 2) # plot of raw samples theta_plot.plot((_w_idx('ysamples', idx), _w_idx('xsamples', idx)), type='scatter', color='black', marker='dot', line_width=0.5, marker_size=1) # plot current parameters theta_plot.plot((_w_idx('y', idx), _w_idx('x', idx)), type='scatter', color=get_annotator_color(idx), marker='plus', marker_size=8, line_width=2) # adjust axis bounds theta_plot.range2d = self._compute_range2d() # remove horizontal grid and axis theta_plot.underlays = [theta_plot.x_grid, theta_plot.y_axis] # create new horizontal axis label_list = [str(i) for i in range(theta_len)] label_axis = LabelAxis( theta_plot, orientation = 'bottom', positions = range(1, theta_len+1), labels = label_list, label_rotation = 0 ) # use a FixedScale tick generator with a resolution of 1 label_axis.tick_generator = ScalesTickGenerator(scale=FixedScale(1.)) theta_plot.index_axis = label_axis theta_plot.underlays.append(label_axis) theta_plot.padding = 25 theta_plot.padding_left = 40 theta_plot.aspect_ratio = 1.0 container = VPlotContainer() container.add(theta_plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) self._set_title(theta_plot) return container
def _theta_plot_default(self): theta = self.theta nannotators = theta.shape[0] samples = self.theta_samples # plot data object plot_data = ArrayPlotData() # create the plot plot = Plot(plot_data) # --- plot theta as vertical dashed lines # add vertical lines extremes plot_data.set_data('line_extr', [0., 1.]) for k in range(nannotators): name = self._theta_name(k) plot_data.set_data(name, [theta[k], theta[k]]) plots = {} for k in range(nannotators): name = self._theta_name(k) line_plot = plot.plot( (name, 'line_extr'), line_width = 2., color = get_annotator_color(k), line_style = 'dash', name = name ) plots[name] = line_plot # --- plot samples as distributions if samples is not None: bins = np.linspace(0., 1., 100) max_hist = 0. for k in range(nannotators): name = self._theta_name(k) + '_distr_' hist, x = np.histogram(samples[:,k], bins=bins) hist = hist / float(hist.sum()) max_hist = max(max_hist, hist.max()) # make "bars" out of histogram values y = np.concatenate(([0], np.repeat(hist, 2), [0])) plot_data.set_data(name+'x', np.repeat(x, 2)) plot_data.set_data(name+'y', y) for k in range(nannotators): name = self._theta_name(k) + '_distr_' plot.plot((name+'x', name+'y'), line_width = 2., color = get_annotator_color(k) ) # --- adjust plot appearance plot.aspect_ratio = 1.6 if is_display_small() else 1.7 plot.padding = [20,0,10,40] # adjust axis bounds x_low, x_high = theta.min(), theta.max() y_low, y_high = 0., 1. if samples is not None: x_high = max(x_high, samples.max()) x_low = min(x_low, samples.min()) y_high = max_hist plot.range2d = DataRange2D( low = (max(x_low-0.05, 0.), y_low), high = (min(x_high*1.1, 1.), min(y_high*1.1, 1.)) ) # label axes plot.value_axis.title = 'Probability' plot.index_axis.title = 'Theta' # add legend legend = Legend(component=plot, plots=plots, align="ul", padding=5) legend.tools.append(LegendTool(legend, drag_button="left")) plot.overlays.append(legend) container = VPlotContainer() container.add(plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) self._set_title(plot) return container
def _theta_plot_default(self): """Create plot of theta parameters.""" # We plot both the thetas and the samples from the posterior; if the # latter are not defined, the corresponding ArrayPlotData names # should be set to an empty list, so that they are not displayed theta = self.model.theta theta_len = theta.shape[0] # create the plot data if not self.theta_plot_data: self.theta_plot_data = ArrayPlotData() self._update_plot_data() # create the plot theta_plot = Plot(self.theta_plot_data) for idx in range(theta_len): # candle plot summarizing samples over the posterior theta_plot.candle_plot((_w_idx('index', idx), _w_idx('min', idx), _w_idx('barmin', idx), _w_idx('avg', idx), _w_idx('barmax', idx), _w_idx('max', idx)), color = get_annotator_color(idx), bar_line_color = "black", stem_color = "blue", center_color = "red", center_width = 2) # plot of raw samples theta_plot.plot((_w_idx('ysamples', idx), _w_idx('xsamples', idx)), type='scatter', color='black', marker='dot', line_width=0.5, marker_size=1) # plot current parameters theta_plot.plot((_w_idx('y', idx), _w_idx('x', idx)), type='scatter', color=get_annotator_color(idx), marker='plus', marker_size=8, line_width=2) # adjust axis bounds theta_plot.range2d = self._compute_range2d() # remove horizontal grid and axis theta_plot.underlays = [theta_plot.x_grid, theta_plot.y_axis] # create new horizontal axis label_list = [str(i) for i in range(theta_len)] label_axis = LabelAxis( theta_plot, orientation = 'bottom', positions = list(range(1, theta_len+1)), labels = label_list, label_rotation = 0 ) # use a FixedScale tick generator with a resolution of 1 label_axis.tick_generator = ScalesTickGenerator(scale=FixedScale(1.)) theta_plot.index_axis = label_axis theta_plot.underlays.append(label_axis) theta_plot.padding = 25 theta_plot.padding_left = 40 theta_plot.aspect_ratio = 1.0 container = VPlotContainer() container.add(theta_plot) container.bgcolor = 0xFFFFFF self.decorate_plot(container, theta) self._set_title(theta_plot) return container