def convert_caffe_model(load_path, save_path): #Caffeモデルを読み込み caffe_model = CaffeFunction(load_path) #pickleモデルに変換して保存 pickle.dump(caffe_model, open(save_path, 'wb')) #デバック print("[Save] {0}".format(save_path))
def __init__(self, n_classes, unchain=True): w = chainer.initializers.HeNormal() model = CaffeFunction( self.CAFFEMODEL_FN) # CaffeModelを読み込んで保存します。(時間がかかります) del model.encode1 # メモリ節約のため不要なレイヤを削除します。 del model.encode2 del model.forwards['encode1'] del model.forwards['encode2'] model.layers = model.layers[:-2] super(Illust2Vec, self).__init__() with self.init_scope(): self.trunk = model # 元のIllust2Vecモデルをtrunkとしてこのモデルに含めます。 self.fc7 = L.Linear(None, 4096, initialW=w) self.bn7 = L.BatchNormalization(4096) self.fc8 = L.Linear(4096, n_classes, initialW=w)
def _make_chainermodel_npz(path_npz, path_caffemodel, model, num_class): print('Now loading caffemodel (usually it may take few minutes)') if not os.path.exists(path_caffemodel): raise IOError('The pre-trained caffemodel does not exist.') caffemodel = CaffeFunction(path_caffemodel) chainermodel = DualCenterProposalNetworkRes50_predict7(n_class=num_class) _transfer_pretrain_resnet50(caffemodel, chainermodel) classifier_model = L.Classifier(chainermodel) serializers.save_npz(path_npz, classifier_model, compression=False) print('model npz is saved') serializers.load_npz(path_npz, model) return model
def load_caffemodel(org_path, dump=True): pkl_path = org_path + '.pkl' if os.path.exists(pkl_path): logger.info('Load pkl model: %s' % pkl_path) model = pickle.load(open(pkl_path, 'rb')) else: if not os.path.exists(org_path): logger.error('Failed to load caffe model: %s' % org_path) return None logger.info('Load caffe model: %s' % org_path) model = CaffeFunction(org_path) if dump: logger.info('Save pkl model: %s' % pkl_path) pickle.dump(model, open(pkl_path, 'wb')) return model
def _make_chainermodel_npz(path_npz, path_caffemodel, model, num_class, v2=True): print('Now loading caffemodel (usually it may take few minutes)') if not os.path.exists(path_caffemodel): raise IOError('The pre-trained caffemodel does not exist.') caffemodel = CaffeFunction(path_caffemodel) if v2: chainermodel = DepthInvariantNetworkRes50FCNVer2(n_class=num_class) _transfer_pretrain_resnet50(caffemodel, chainermodel, use_res5=False) else: chainermodel = DepthInvariantNetworkRes50FCN(n_class=num_class) _transfer_pretrain_resnet50(caffemodel, chainermodel, use_res5=True) classifier_model = L.Classifier(chainermodel) serializers.save_npz(path_npz, classifier_model, compression=False) print('model npz is saved') serializers.load_npz(path_npz, model) return model
def make_i2v_with_chainer(param_path, tag_path=None, threshold_path=None): # ignore UserWarnings from chainer with warnings.catch_warnings(): warnings.simplefilter('ignore') net = CaffeFunction(param_path) kwargs = {} if tag_path is not None: tags = json.loads(open(tag_path, 'r').read()) assert(len(tags) == 1539) kwargs['tags'] = tags if threshold_path is not None: fscore_threshold = np.load(threshold_path)['threshold'] kwargs['threshold'] = fscore_threshold return ChainerI2V(net, **kwargs)
def main(): parser = argparse.ArgumentParser( \ description="""Convert caffemodel SSD, and load pose model, and the save PoseSsdNet model.""") parser.add_argument("--pose_model_path", default="coco_posenet.npz", help="Path to the pose model in chainer") parser.add_argument( "--ssd_model_path", default= "ssd/VGGNet/coco/SSD_300x300/VGG_coco_SSD_300x300_iter_400000.caffemodel", help="Path to the SSD model in caffe") parser.add_argument("--save_model_path", default="coco_pose_ssd_net.npz", help="Path to the pose ssd model") args = parser.parse_args() n_class = 80 # coco pose_ssd_model = CocoPoseSsdNet(n_class) print("Loaded pose_ssd_net") # copy pose net params pose_model = CocoPoseNet() load_npz(args.pose_model_path, pose_model) print("Loaded pose_net") for src_lname, dst_lname in zip(pose_layers, my_pose_layer): copy_conv_net(pose_model, pose_ssd_model, src_lname, dst_lname) # copy ssd net params ssd_model = CaffeFunction(args.ssd_model_path) print("Loaded caffe_ssd_net") for src_lname, dst_lname in zip(ssd_layers, my_ssd_layers): if src_lname == 'norm4': copy_ssd_norm_layer(args.ssd_model_path, pose_ssd_model) else: copy_conv_net(ssd_model, pose_ssd_model, src_lname, dst_lname) # save pose ssd model save_npz(args.save_model_path, pose_ssd_model)
import argparse import pickle from chainer.links.caffe import CaffeFunction if __name__ == '__main__': parser = argparse.ArgumentParser( description='Convert from caffe model to chainer model') parser.add_argument('-m', '--model', type=str, required=True, help='path to caffe model file') parser.add_argument('-o', '--out', type=str, default=None, help='path to output file') args = parser.parse_args() if not args.out: outfile = (args.model).rsplit('.', 1)[0] + '.chainermodel.pkl' else: outfile = args.model vgg = CaffeFunction(args.model) pickle.dump(vgg, open(outfile, 'wb'))
import chainer from chainer import serializers from chainer.links.caffe import CaffeFunction import config from ssd import SSD300 if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('source') parser.add_argument('target') parser.add_argument('--baseonly', action='store_true') parser.set_defaults(baseonly=False) args = parser.parse_args() caffe_model = CaffeFunction(args.source) model = SSD300(n_class=20, aspect_ratios=config.aspect_ratios) model.base.conv1_1.copyparams(caffe_model.conv1_1) model.base.conv1_2.copyparams(caffe_model.conv1_2) model.base.conv2_1.copyparams(caffe_model.conv2_1) model.base.conv2_2.copyparams(caffe_model.conv2_2) model.base.conv3_1.copyparams(caffe_model.conv3_1) model.base.conv3_2.copyparams(caffe_model.conv3_2) model.base.conv3_3.copyparams(caffe_model.conv3_3) model.base.conv4_1.copyparams(caffe_model.conv4_1) model.base.conv4_2.copyparams(caffe_model.conv4_2) model.base.conv4_3.copyparams(caffe_model.conv4_3)
import numpy as np from PIL import Image from chainer import Variable from chainer.links import VGG16Layers from chainer.links.caffe import CaffeFunction from analysis import Analysis model = VGG16Layers() img = Image.open("path/to/image.jpg") feature = model.extract([img], layers=["fc7"])["fc7"] # Load the model func = CaffeFunction('bvlc_googlenet.caffemodel') # Minibatch of size 10 x_data = np.ndarray((10, 3, 227, 227), dtype=np.float32) # Forward the pre-trained net x = Variable(x_data) y, = func(inputs={'data': x}, outputs=['fc8']) # create caffemodel neural network # create analysis object ana = Analysis(ann.model, fname='tmp') # handle sequential data; deal with classifier analysis separately # analyse data
from chainer.links.caffe import CaffeFunction import os import pickle if os.path.exists("vgg.pkl"): with open("vgg.pkl", "rb") as f: vgg = pickle.load(f) else: vgg = CaffeFunction("VGG_ILSVRC_19_layers.caffemodel") with open("vgg.pkl", "wb") as f: pickle.dump(vgg, f) for l in vgg.layers: name, inp, out = l if hasattr(vgg, name): print(name, ":", inp[0], "->", out[0]) else: print(name) print() for l in vgg.children(): print(l.W.shape, l.name)
# -*- coding: utf-8 -*- import cPickle as pickle from chainer.links.caffe import CaffeFunction vgg = CaffeFunction('../caffenet.caffemodel') with open("./caffenet.pkl", 'wb') as fo: pickle.dump(vgg, fo)
def convert_caffe2chainer(): parser = argparse.ArgumentParser() parser.add_argument("--dataset", default="dataset") args = parser.parse_args() print('start loading model file...') caffe_model = CaffeFunction('googlenet.caffemodel') print('Done.') # copy parameters from caffemodel into chainer model print('start copy params.') b, _, _ = dataset_label(args.dataset) googlenet = GoogleNetBN(n_class=len(b)) googlenet.conv1.W.data = caffe_model['conv1/7x7_s2'].W.data googlenet.conv2.W.data = caffe_model['conv2/3x3'].W.data """Inception module of the new GoogLeNet with BatchNormalization.""" # inc3a googlenet.inc3a.conv1.W.data = caffe_model['inception_3a/1x1'].W.data googlenet.inc3a.conv3.W.data = caffe_model['inception_3a/3x3'].W.data googlenet.inc3a.conv33a.W.data = caffe_model[ 'inception_3a/double3x3a'].W.data googlenet.inc3a.conv33b.W.data = caffe_model[ 'inception_3a/double3x3b'].W.data googlenet.inc3a.proj3.W.data = caffe_model[ 'inception_3a/3x3_reduce'].W.data googlenet.inc3a.proj33.W.data = caffe_model[ 'inception_3a/double3x3_reduce'].W.data googlenet.inc3a.poolp.W.data = caffe_model['inception_3a/pool_proj'].W.data # inc3b googlenet.inc3b.conv1.W.data = caffe_model['inception_3b/1x1'].W.data googlenet.inc3b.conv3.W.data = caffe_model['inception_3b/3x3'].W.data googlenet.inc3b.conv33a.W.data = caffe_model[ 'inception_3b/double3x3a'].W.data googlenet.inc3b.conv33b.W.data = caffe_model[ 'inception_3b/double3x3b'].W.data googlenet.inc3b.proj3.W.data = caffe_model[ 'inception_3b/3x3_reduce'].W.data googlenet.inc3b.proj33.W.data = caffe_model[ 'inception_3b/double3x3_reduce'].W.data googlenet.inc3b.poolp.W.data = caffe_model['inception_3b/pool_proj'].W.data # inc3c googlenet.inc3c.conv3.W.data = caffe_model['inception_3c/3x3'].W.data googlenet.inc3c.conv33a.W.data = caffe_model[ 'inception_3c/double3x3a'].W.data googlenet.inc3c.conv33b.W.data = caffe_model[ 'inception_3c/double3x3b'].W.data googlenet.inc3c.proj3.W.data = caffe_model[ 'inception_3c/3x3_reduce'].W.data googlenet.inc3c.proj33.W.data = caffe_model[ 'inception_3c/double3x3_reduce'].W.data # inc4a googlenet.inc4a.conv1.W.data = caffe_model['inception_4a/1x1'].W.data googlenet.inc4a.conv3.W.data = caffe_model['inception_4a/3x3'].W.data googlenet.inc4a.conv33a.W.data = caffe_model[ 'inception_4a/double3x3a'].W.data googlenet.inc4a.conv33b.W.data = caffe_model[ 'inception_4a/double3x3b'].W.data googlenet.inc4a.proj3.W.data = caffe_model[ 'inception_4a/3x3_reduce'].W.data googlenet.inc4a.proj33.W.data = caffe_model[ 'inception_4a/double3x3_reduce'].W.data googlenet.inc4a.poolp.W.data = caffe_model['inception_4a/pool_proj'].W.data # inc4b googlenet.inc4b.conv1.W.data = caffe_model['inception_4b/1x1'].W.data googlenet.inc4b.conv3.W.data = caffe_model['inception_4b/3x3'].W.data googlenet.inc4b.conv33a.W.data = caffe_model[ 'inception_4b/double3x3a'].W.data googlenet.inc4b.conv33b.W.data = caffe_model[ 'inception_4b/double3x3b'].W.data googlenet.inc4b.proj3.W.data = caffe_model[ 'inception_4b/3x3_reduce'].W.data googlenet.inc4b.proj33.W.data = caffe_model[ 'inception_4b/double3x3_reduce'].W.data googlenet.inc4b.poolp.W.data = caffe_model['inception_4b/pool_proj'].W.data # inc4c # googlenet.inc4c.conv1.W.data = caffe_model['inception_4c/1x1'].W.data googlenet.inc4c.conv3.W.data = caffe_model['inception_4c/3x3'].W.data googlenet.inc4c.conv33a.W.data = caffe_model[ 'inception_4c/double3x3a'].W.data googlenet.inc4c.conv33b.W.data = caffe_model[ 'inception_4c/double3x3b'].W.data googlenet.inc4c.proj3.W.data = caffe_model[ 'inception_4c/3x3_reduce'].W.data googlenet.inc4c.proj33.W.data = caffe_model[ 'inception_4c/double3x3_reduce'].W.data # googlenet.inc4c.poolp.W.data = caffe_model['inception_4c/pool_proj'].W.data # inc4d # googlenet.inc4d.conv1.W.data = caffe_model['inception_4d/1x1'].W.data googlenet.inc4d.conv3.W.data = caffe_model['inception_4d/3x3'].W.data googlenet.inc4d.conv33a.W.data = caffe_model[ 'inception_4d/double3x3a'].W.data googlenet.inc4d.conv33b.W.data = caffe_model[ 'inception_4d/double3x3b'].W.data googlenet.inc4d.proj3.W.data = caffe_model[ 'inception_4d/3x3_reduce'].W.data googlenet.inc4d.proj33.W.data = caffe_model[ 'inception_4d/double3x3_reduce'].W.data # googlenet.inc4d.poolp.W.data = caffe_model['inception_4d/pool_proj'].W.data # inc4e googlenet.inc4e.conv3.W.data = caffe_model['inception_4e/3x3'].W.data googlenet.inc4e.conv33a.W.data = caffe_model[ 'inception_4e/double3x3a'].W.data googlenet.inc4e.conv33b.W.data = caffe_model[ 'inception_4e/double3x3b'].W.data googlenet.inc4e.proj3.W.data = caffe_model[ 'inception_4e/3x3_reduce'].W.data googlenet.inc4e.proj33.W.data = caffe_model[ 'inception_4e/double3x3_reduce'].W.data # inc5a googlenet.inc5a.conv1.W.data = caffe_model['inception_5a/1x1'].W.data googlenet.inc5a.conv3.W.data = caffe_model['inception_5a/3x3'].W.data googlenet.inc5a.conv33a.W.data = caffe_model[ 'inception_5a/double3x3a'].W.data googlenet.inc5a.conv33b.W.data = caffe_model[ 'inception_5a/double3x3b'].W.data googlenet.inc5a.proj3.W.data = caffe_model[ 'inception_5a/3x3_reduce'].W.data googlenet.inc5a.proj33.W.data = caffe_model[ 'inception_5a/double3x3_reduce'].W.data googlenet.inc5a.poolp.W.data = caffe_model['inception_5a/pool_proj'].W.data # inc5b googlenet.inc5b.conv1.W.data = caffe_model['inception_5b/1x1'].W.data googlenet.inc5b.conv3.W.data = caffe_model['inception_5b/3x3'].W.data googlenet.inc5b.conv33a.W.data = caffe_model[ 'inception_5b/double3x3a'].W.data googlenet.inc5b.conv33b.W.data = caffe_model[ 'inception_5b/double3x3b'].W.data googlenet.inc5b.proj3.W.data = caffe_model[ 'inception_5b/3x3_reduce'].W.data googlenet.inc5b.proj33.W.data = caffe_model[ 'inception_5b/double3x3_reduce'].W.data googlenet.inc5b.poolp.W.data = caffe_model['inception_5b/pool_proj'].W.data # googlenet.loss1_conv.W.data = caffe_model["loss1/conv"].W.data # googlenet.loss1_fc1.W.data = caffe_model["loss1/fc"].W.data # googlenet.loss2_conv.W.data = caffe_model["loss2/conv"].W.data # googlenet.loss2_fc1.W.data = caffe_model["loss2/fc"].W.data serializers.save_npz('tuned_googlenetbn.npz', googlenet) print('Done')
# Load data and Segmentationprefetcher print("loading data...") data = loadseg.SegmentationData("dataset/broden1_227") pf = loadseg.SegmentationPrefetcher(data, categories=["image"], split=None, once=True, batch_size=1) # prepare generator for image data in numpy array batch = pf.tensor_batches(bgr_mean=MEAN) # loading caffe model print("loading caffe model...") model = CaffeFunction( "../NetDissect/zoo/caffe_reference_imagenet.caffemodel") print("Caffe model loaded.") model.cleargrads() print("saving saliency_map") save_saliency_map(model, batch, end=1000) # initialize batch generator batch = pf.tensor_batches(bgr_mean=MEAN) W = 4 H = 3 fig, axes = plt.subplots(W, H * 2) axes = axes.reshape(-1) start = 80 category = [] for i, (smap, index) in enumerate(saliency_map(model, batch)):
def main(): #オプションの追加 parser = argparse.ArgumentParser(description='Chainer : C3D') parser.add_argument('--arch', '-a', default='ADAM', help='Convnet architecture') parser.add_argument('--batchsize', '-b', type=int, default=1, help='Number of images in each mini-batch') parser.add_argument('--epoch', '-e', type=int, default=100, help='Number of sweeps over the dataset to train') parser.add_argument('--gpu', '-g', type=int, default=0, help='GPU ID (negative value indicates CPU)') parser.add_argument('--out', '-o', default='../result/20171006', help='Directory to output the result') parser.add_argument('--resume', '-r', default='resume', help='Resume the training from snapshot') parser.add_argument('--unit', '-u', type=int, default=1000, help='Number of units') parser.add_argument('--input', '-i', default='../data/sample_videoset_171x128', help='Directory to input data') args = parser.parse_args() print('GPU: {}'.format(args.gpu)) print('# unit: {}'.format(args.unit)) print('# Minibatch-size: {}'.format(args.batchsize)) print('# epoch: {}'.format(args.epoch)) print('# input: {}'.format(args.input)) print('') #データセットの読み込み v = videoread.VideoRead() train, test = v.combine_data_label(args.input) #学習済みCaffeモデルの設定 model = CaffeFunction("c3d_resnet18_ucf101_r2_ft_iter_20000.caffemodel") #print (pre_model.shape) #model = c3dnet.C3D() if args.gpu >= 0: chainer.cuda.get_device(args.gpu).use() # Make a specified GPU current model.to_gpu() # Copy the model to the GPU #Setup an optimizer" optimizer = chainer.optimizers.MomentumSGD() optimizer.setup(model) "caffemodelへの入力の仕方" #models.layersでレイヤー一覧 #model(inputs={"data": np.zeros((8,128,171,3))}, outputs={"conv1"}) #make iterators" train_iter = chainer.iterators.SerialIterator(train, args.batchsize) test_iter = chainer.iterators.SerialIterator(test, args.batchsize, repeat=False, shuffle=False) #set up a trainer" updater = training.StandardUpdater(train_iter, optimizer, device=args.gpu) trainer = training.Trainer(updater, (args.epoch, 'epoch'), out=args.out) val_interval = (20), 'iteration' log_interval = (20), 'iteration' trainer.extend(extensions.Evaluator(test_iter, model, device=args.gpu)) trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.snapshot(), trigger=val_interval) trainer.extend(extensions.snapshot_object( model, 'model_iter_{.updater.iteration}'), trigger=val_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.PrintReport([ 'epoch', 'iteration', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'lr' ]), trigger=log_interval) #Progress barを表示 trainer.extend(extensions.ProgressBar()) #update_interval=10)) trainer.run() serializers.save_npz("mymodel.npz", model)
import pickle from chainer.links.caffe import CaffeFunction import argparse parser = argparse.ArgumentParser() parser.add_argument('--output', '-o', default='alexnet.pkl') parser.add_argument('--input', '-i', default='bvlc_alexnet.caffemodel') args = parser.parse_args() loadpath = args.input savepath = args.output alexnet = CaffeFunction(loadpath) pickle.dump(alexnet, open(savepath, 'wb'))
from __future__ import print_function import os, sys from chainer.links.caffe import CaffeFunction from chainer import serializers import utils print('load VGG16 caffemodel') vgg = CaffeFunction('pretrained_model/VGG_ILSVRC_16_layers.caffemodel') print('save "vgg16.npz"') serializers.save_npz('pretrained_model/vgg16.npz', vgg)
print 'average time: {} ms\n'.format(float(record['time']) * 1000/ record['number']) print '================================================' timer_hook = TimerHook() layer_timer_hook = TimerHook() layer_timer_hook.name = 'Layer-by-layer timer hook' # configuration for inference chainer.config.train = False progress_bar = ProgressBar(estimate_load_time) progress_bar.start() print 'loading caffe model...' start_time = time.time() func = CaffeFunction(model_path) end_time = time.time() progress_bar.end() time.sleep(1) print '\nsuccessfully load caffe model, it costs %s seconds' % (end_time - start_time) max_iter = 1000 if 50000 / N >= 1000 else 50000 / N total_time = 0 average_time = 0 # global batch_geneartor bg = batch_generator() # count top 1 and top 5 accracy
# Define a model if args.pretrain: logger.info('Define a R-CNN_Face model') model = models.RCNNFaceModel() else: logger.info('Define a HyperFace model') model = models.HyperFaceModel() # Initialize model if not args.resume: if args.pretrain and config.alexnet_caffemodel_path: # Initialize using caffemodel logger.info('Overwrite conv layers using caffemodel "{}"' .format(config.alexnet_caffemodel_path)) caffe_model = CaffeFunction(config.alexnet_caffemodel_path) copy_layers(caffe_model, model) elif not args.pretrain and args.pretrainedmodel: # Initialize using pretrained model logger.info('Overwrite conv layers using pretraindmodel "{}"' .format(args.pretrainedmodel)) pre_model = models.RCNNFaceModel() chainer.serializers.load_npz(args.pretrainedmodel, pre_model) copy_layers(pre_model, model) # Setup GPU if config.gpu >= 0: logger.info('Verifying GPU') chainer.cuda.check_cuda_available() chainer.cuda.get_device(config.gpu).use()
def save(func): for candidate in func.layers: if (candidate[0]) in dir(func): name = candidate[0] savePlot(func[name], name) ## AlexNet visualizer from chainer.links.caffe import CaffeFunction import cPickle as pickle try: # Load pickled one gn = pickle.load(open('bvlc_alexnet.pickle')) except: # Or load the original & keep it print "loading the original caffe model, takes time. hold on and relax..." gn = CaffeFunction('bvlc_alexnet.caffemodel') pickle.dump(gn, open('bvlc_alexnet.pickle', 'wb'), -1) showPlot(gn.conv1) #showPlot(gn.conv2) #showPlot(gn.conv3) #showPlot(gn.conv4) #showPlot(gn.conv5) #showPlot(gn.fc6) #showPlot(gn.fc7) #showPlot(gn.fc8) # alternative visualizer for conv1 (96, 3, 11, 11) for i in range(4): plt.subplot(2, 2, i + 1) plt.axis('off')
from chainer.links.caffe import CaffeFunction from FCN import PPO import torch import numpy as np net = CaffeFunction('./initial_weight/zhang_cvpr17_denoise_50_gray.caffemodel') print(net.layer1.W.data.shape) model = PPO(9, 1) model_dict = model.state_dict() print(model_dict['conv.0.weight'].size()) print(model_dict.keys()) model_dict['conv.0.weight'] = torch.FloatTensor(net.layer1.W.data) model_dict['conv.0.bias'] = torch.FloatTensor(net.layer1.b.data) model_dict['conv.2.weight'] = torch.FloatTensor(net.layer3.W.data) model_dict['conv.2.bias'] = torch.FloatTensor(net.layer3.b.data) model_dict['conv.4.weight'] = torch.FloatTensor(net.layer6.W.data) model_dict['conv.4.bias'] = torch.FloatTensor(net.layer6.b.data) model_dict['conv.6.weight'] = torch.FloatTensor(net.layer9.W.data) model_dict['conv.6.bias'] = torch.FloatTensor(net.layer9.b.data) model_dict['diconv1_p.weight'] = torch.FloatTensor(net.layer12.W.data) model_dict['diconv1_p.bias'] = torch.FloatTensor(net.layer12.b.data) model_dict['diconv2_p.weight'] = torch.FloatTensor(net.layer15.W.data) model_dict['diconv2_p.bias'] = torch.FloatTensor(net.layer15.b.data) model_dict['diconv1_v.weight'] = torch.FloatTensor(net.layer12.W.data) model_dict['diconv1_v.bias'] = torch.FloatTensor(net.layer12.b.data) model_dict['diconv2_v.weight'] = torch.FloatTensor(net.layer15.W.data) model_dict['diconv2_v.bias'] = torch.FloatTensor(net.layer15.b.data) model.load_state_dict(model_dict) torch.save(model.state_dict(), "./torch_initweight/sig50_gray.pth")
def main(): # 単語リスト words = {} # 単語を読み込む f = codecs.open("data\\caption-words.txt", "r", "utf-8") line = f.readline() while line: # 不要文字を削除し分割 l = line.strip().split(",") words[l[1]] = int(l[0]) # 次の行を読み込む line = f.readline() # クローズ処理 f.close() # 読込 s_w = codecs.open("data\\caption-wakati.txt", "r", "utf-8") s_i = codecs.open("data\\img_id.txt", "r", "utf-8") # 全ての画像ベクトルと説明文のセット sentence = [] # TODO:CaffeModel=>pickle化 # ReferenceError: weakly-referenced object no longer exists MODEL = "model\\bvlc_alexnet.caffemodel" # PICKLE = "model\\alex_net.pkl" # pickleを読込 # if os.path.exists(PICKLE): # # 存在する場合 # model = pickle.load(open(PICKLE, "rb")) # else: # # 存在しない場合 # if os.path.exists(MODEL): # CaffeModelをpickleに変換する # model = CaffeFunction(MODEL) # pickle.dump(model, open(PICKLE, "wb")) # model = pickle.load(open(PICKLE, "rb")) # else: # CaffeModelが存在しない場合は中断 # print("model notfound") # exit() model = CaffeFunction(MODEL) if uses_device >= 0: # GPUを使う chainer.cuda.get_device_from_id(0).use() chainer.cuda.check_cuda_available() model.to_gpu() # 1行ずつ処理を行う line = s_w.readline() img_id = s_i.readline() while line and img_id: # 行中の単語をリスト化 l = line.strip().split(" ") # ファイル名を作成 file_name = "image\\" + img_id.strip() + ".jpg" # デバッグ print(file_name) # ファイルの読込] img = Image.open(file_name).resize((400, 400)).convert("RGB") # 画像ベクトルの配列 vectors = [] # 4辺+中央で計5枚の画像を作る for s in [ (0, 0, 227, 227), # 左上 (173, 0, 400, 277), # 右上 (0, 173, 227, 400), # 左下 (173, 173, 400, 400), # 右下 (86, 86, 313, 313) # 中央 ]: # 画像から切り出し cropimg = img.crop(s) # 画素を数値データに変換 pix = np.array(cropimg, dtype=np.float32) pix = (pix[::-1]).transpose(2, 0, 1) x = cp.array([pix], dtype=cp.float32) # Debug print(x.ndim) print(x.shape) print(x.size) # TODO: Error fix # Expect: x.shape[1] == W.shape[1] # 読み込み2回目でエラー(左側が次元数おかしい) # Actual: 12288 != 9216 # fc6層のデータを抽出 e, = model(inputs={"data": x}, outputs=["fc6"], disable=["drop6"]) # 画像ベクトルの配列に結果を格納 vectors.append(e.data[0].copy()) # 数値の配列 lines = [0] # 単語を数値に変換 for x in l: if x in words: lines.append(words[x]) # 行が終わったところで終端文字を挿入 lines.append(1) sentence.append((vectors, lines)) # 次の行 line = s_w.readline() img_id = s_i.readline() # クローズ処理 s_w.close() s_i.close() # 最長の文 l_max = max([len(l[1]) for l in sentence]) # 文長を揃える(バッチ処理の関係) for i in range(len(sentence)): # 足りない長さは終端文字で埋める sentence[i][1].extend([1] * (l_max - len(sentence[i][1]))) # ニューラルネットワークの作成 model = ImageCaption_NN(max(words.values()) + 1, 500) if uses_device >= 0: model.to_gpu() # Optimizerを作成 optimizer = optimizers.Adam() optimizer.setup(model) # Iteratorを作成 train_iter = iterators.SerialIterator(sentence, batch_size, shuffle=False) updater = ImageCaptionUpdater(train_iter, optimizer, device=uses_device) trainer = training.Trainer(updater, (80, "epoch"), out="result") # 学習状況を可視化 trainer.extend(extensions.ProgressBar(update_interval=1)) # 学習実行 trainer.run() # 結果を保存する chainer.serializers.save_hdf5("result.hdf5", model)
for child in src.children(): if child.name not in dst.__dict__: continue dst_child = dst[child.name] if type(child) != type(dst_child): continue if isinstance(child, link.Chain): copy_model(child, dst_child) if isinstance(child, link.Link): match = True for a, b in zip(child.namedparams(), dst_child.namedparams()): if a[0] != b[0]: match = False break if a[1].data.shape != b[1].data.shape: match = False break if not match: print('Ignore %s because of parameter mismatch' % child.name) continue for a, b in zip(child.namedparams(), dst_child.namedparams()): b[1].data = a[1].data print('Copy %s' % child.name) print('load VGG16 caffemodel') ref = CaffeFunction('VGG_ILSVRC_16_layers.caffemodel') vgg = VGG() print('copy weights') copy_model(ref, vgg) print('save "vgg16.model"') serializers.save_npz('vgg16.model', vgg)
from chainer.serializers import npz import os, tkinter.filedialog, tkinter, tkinter.messagebox from chainer.links.caffe import CaffeFunction root = tkinter.Tk() root.withdraw() fTyp = [("", "*")] iDir = os.path.abspath(os.path.dirname(__file__)) path = tkinter.filedialog.askopenfilename(filetypes=fTyp, initialdir=iDir) model = CaffeFunction(path) npz.save_npz('vgg16.npz', model, compression=False)