예제 #1
0
    def setUp(self):
        self.x_shape = (4, 3, 2)
        self.dtype = numpy.float32

        self.link = links.Swish(None)
        self.link.cleargrads()

        self.x = numpy.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
        self.gy = numpy.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
예제 #2
0
    def setUp(self):
        self.x_shape = (4, 3, 2)
        self.dtype = numpy.float32

        self.link = links.Swish(())
        beta = self.link.beta.data
        beta[...] = numpy.random.uniform(-1, 1, beta.shape)
        self.link.cleargrads()

        self.x = numpy.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
        self.gy = numpy.random.uniform(-1, 1, self.x_shape).astype(self.dtype)
예제 #3
0
 def __init__(self,
              n_in=75,
              n_units=500,
              n_units2=400,
              n_out=75,
              train=True):
     super(LSTM, self).__init__()
     with self.init_scope():
         self.l1 = L.LSTM(
             in_size=n_in,
             out_size=n_units,
             lateral_init=chainer.initializers.Normal(scale=0.01))
         self.l2 = L.Linear(
             in_size=n_units,
             out_size=n_out,
             initialW=chainer.initializers.Normal(scale=0.01))
         self.l3 = L.Swish(beta_shape=n_out)
         self.train = train
예제 #4
0
 def __init__(self, function, inputs, outputs):
     super(ConvertSwish, self).__init__()
     with self.init_scope():
         self.f = L.Swish(beta_shape=function.params['beta'].shape,
                          beta_init=function.params['beta'])