def set_model(self, n_class=2): """モデルのセット Args: n_class (int, optional): 認識する物体クラスの数. Defaults to 2. """ faster_rcnn = FasterRCNNVGG16(n_fg_class=n_class, pretrained_model="imagenet") faster_rcnn.use_preset("evaluate") model = FasterRCNNTrainChain(faster_rcnn) self.model = model self.logger.info("set FasterRCNNVGG16, pretrained=imagenet")
def setUp(self): faster_rcnn = FasterRCNNVGG16( n_fg_class=self.n_fg_class, pretrained_model=False) self.link = FasterRCNNTrainChain(faster_rcnn) self.n_bbox = 3 self.bboxes = chainer.Variable( generate_random_bbox(self.n_bbox, (600, 800), 16, 350)[np.newaxis]) _labels = np.random.randint( 0, self.n_fg_class, size=(1, self.n_bbox)).astype(np.int32) self.labels = chainer.Variable(_labels) _imgs = np.random.uniform( low=-122.5, high=122.5, size=(1, 3, 600, 800)).astype(np.float32) self.imgs = chainer.Variable(_imgs) self.scale = chainer.Variable(np.array(1.))
def get_faster_rcnn(n): frc = FasterRCNNVGG16(n_fg_class=20) model = FasterRCNNTrainChain(frc) batchsize = 1 # only 1 is supported K = 10 x = np.random.uniform(size=(batchsize, 3, n * 512, 512)).astype('f') x = chainer.as_variable(x) bbox = np.random.uniform(size=(batchsize, K, 4)).astype('f') bbox = chainer.as_variable(bbox) labels = np.random.randint(size=(batchsize, K), low=0, high=20)\ .astype(np.int32) labels = chainer.as_variable(labels) scale = np.ones((batchsize, )).astype('f') scale = chainer.as_variable(scale) return [x, bbox, labels, scale], model
def setUp(self): self.n_anchor_base = 6 self.feat_stride = 4 self.n_fg_class = 3 self.n_roi = 24 self.n_bbox = 3 self.link = FasterRCNNTrainChain(DummyFasterRCNN( n_anchor_base=self.n_anchor_base, feat_stride=self.feat_stride, n_fg_class=self.n_fg_class, n_roi=self.n_roi, min_size=600, max_size=800, )) self.bboxes = chainer.Variable( generate_random_bbox(self.n_bbox, (600, 800), 16, 350)[np.newaxis]) _labels = np.random.randint( 0, self.n_fg_class, size=(1, self.n_bbox)).astype(np.int32) self.labels = chainer.Variable(_labels) self.imgs = chainer.Variable(_random_array((1, 3, 600, 800))) self.scale = chainer.Variable(np.array(1.))
def main(): parser = argparse.ArgumentParser( description='ChainerCV training example: Faster R-CNN') parser.add_argument('--dataset', choices=('voc07', 'voc0712'), help='The dataset to use: VOC07, VOC07+12', default='voc07') parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--lr', '-l', type=float, default=1e-3) parser.add_argument('--out', '-o', default='result', help='Output directory') parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--step_size', '-ss', type=int, default=50000) parser.add_argument('--iteration', '-i', type=int, default=70000) args = parser.parse_args() np.random.seed(args.seed) if args.dataset == 'voc07': train_data = VOCBboxDataset(split='trainval', year='2007') elif args.dataset == 'voc0712': train_data = ConcatenatedDataset( VOCBboxDataset(year='2007', split='trainval'), VOCBboxDataset(year='2012', split='trainval')) test_data = VOCBboxDataset(split='test', year='2007', use_difficult=True, return_difficult=True) faster_rcnn = FasterRCNNVGG16(n_fg_class=len(voc_bbox_label_names), pretrained_model='imagenet') faster_rcnn.use_preset('evaluate') model = FasterRCNNTrainChain(faster_rcnn) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005)) train_data = TransformDataset(train_data, Transform(faster_rcnn)) train_iter = chainer.iterators.MultiprocessIterator(train_data, batch_size=1, n_processes=None, shared_mem=100000000) test_iter = chainer.iterators.SerialIterator(test_data, batch_size=1, repeat=False, shuffle=False) updater = chainer.training.updaters.StandardUpdater(train_iter, optimizer, device=args.gpu) trainer = training.Trainer(updater, (args.iteration, 'iteration'), out=args.out) trainer.extend(extensions.snapshot_object(model.faster_rcnn, 'snapshot_model.npz'), trigger=(args.iteration, 'iteration')) trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(args.step_size, 'iteration')) log_interval = 20, 'iteration' plot_interval = 3000, 'iteration' print_interval = 20, 'iteration' trainer.extend(chainer.training.extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'iteration', 'epoch', 'elapsed_time', 'lr', 'main/loss', 'main/roi_loc_loss', 'main/roi_cls_loss', 'main/rpn_loc_loss', 'main/rpn_cls_loss', 'validation/main/map', ]), trigger=print_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) if extensions.PlotReport.available(): trainer.extend(extensions.PlotReport(['main/loss'], file_name='loss.png', trigger=plot_interval), trigger=plot_interval) trainer.extend(DetectionVOCEvaluator(test_iter, model.faster_rcnn, use_07_metric=True, label_names=voc_bbox_label_names), trigger=ManualScheduleTrigger( [args.step_size, args.iteration], 'iteration')) trainer.extend(extensions.dump_graph('main/loss')) trainer.run()
def main(): parser = argparse.ArgumentParser( description='ChainerCV training example: Faster R-CNN') parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--lr', '-l', type=float, default=1e-3) parser.add_argument('--out', '-o', default='result', help='Output directory') parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--step_size', '-ss', type=int, default=50000) parser.add_argument('--iteration', '-i', type=int, default=70000) args = parser.parse_args() np.random.seed(args.seed) train_data = VOCDetectionDataset(split='trainval', year='2007') test_data = VOCDetectionDataset(split='test', year='2007', use_difficult=True, return_difficult=True) faster_rcnn = FasterRCNNVGG16(n_fg_class=len(voc_detection_label_names), pretrained_model='imagenet') faster_rcnn.use_preset('evaluate') model = FasterRCNNTrainChain(faster_rcnn) if args.gpu >= 0: model.to_gpu(args.gpu) chainer.cuda.get_device(args.gpu).use() optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005)) def transform(in_data): img, bbox, label = in_data _, H, W = img.shape img = faster_rcnn.prepare(img) _, o_H, o_W = img.shape scale = o_H / H bbox = transforms.resize_bbox(bbox, (H, W), (o_H, o_W)) # horizontally flip img, params = transforms.random_flip(img, x_random=True, return_param=True) bbox = transforms.flip_bbox(bbox, (o_H, o_W), x_flip=params['x_flip']) return img, bbox, label, scale train_data = TransformDataset(train_data, transform) train_iter = chainer.iterators.MultiprocessIterator(train_data, batch_size=1, n_processes=None, shared_mem=100000000) test_iter = chainer.iterators.SerialIterator(test_data, batch_size=1, repeat=False, shuffle=False) updater = chainer.training.updater.StandardUpdater(train_iter, optimizer, device=args.gpu) trainer = training.Trainer(updater, (args.iteration, 'iteration'), out=args.out) trainer.extend(extensions.snapshot_object(model.faster_rcnn, 'snapshot_model.npz'), trigger=(args.iteration, 'iteration')) trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(args.step_size, 'iteration')) log_interval = 20, 'iteration' plot_interval = 3000, 'iteration' print_interval = 20, 'iteration' trainer.extend(chainer.training.extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'iteration', 'epoch', 'elapsed_time', 'lr', 'main/loss', 'main/roi_loc_loss', 'main/roi_cls_loss', 'main/rpn_loc_loss', 'main/rpn_cls_loss', 'validation/main/map', ]), trigger=print_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) if extensions.PlotReport.available(): trainer.extend(extensions.PlotReport(['main/loss'], file_name='loss.png', trigger=plot_interval), trigger=plot_interval) trainer.extend( DetectionVOCEvaluator(test_iter, model.faster_rcnn, use_07_metric=True, label_names=voc_detection_label_names), trigger=ManualScheduleTrigger([args.step_size, args.iteration], 'iteration'), invoke_before_training=False) trainer.extend(extensions.dump_graph('main/loss')) trainer.run()
def main(): bbox_label_names = ('loop') n_itrs = 70000 n_step = 50000 np.random.seed(0) train_data = DefectDetectionDataset(split='train') test_data = DefectDetectionDataset(split='test') proposal_params = {'min_size': 8} faster_rcnn = FasterRCNNVGG16(n_fg_class=1, pretrained_model='imagenet', ratios=[0.5, 1, 2], anchor_scales=[1, 4, 8, 16], min_size=512, max_size=1024, proposal_creator_params=proposal_params) faster_rcnn.use_preset('evaluate') model = FasterRCNNTrainChain(faster_rcnn) chainer.cuda.get_device_from_id(0).use() model.to_gpu() optimizer = chainer.optimizers.MomentumSGD(lr=1e-3, momentum=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005)) train_data = TransformDataset(train_data, Transform(faster_rcnn)) train_iter = chainer.iterators.MultiprocessIterator( train_data, batch_size=1, n_processes=None, shared_mem=100000000) test_iter = chainer.iterators.SerialIterator( test_data, batch_size=1, repeat=False, shuffle=False) updater = chainer.training.updater.StandardUpdater( train_iter, optimizer, device=0) trainer = training.Trainer( updater, (n_itrs, 'iteration'), out='result') trainer.extend( extensions.snapshot_object(model.faster_rcnn, 'snapshot_model_{.updater.iteration}.npz'), trigger=(n_itrs/5, 'iteration')) trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(n_step, 'iteration')) log_interval = 50, 'iteration' plot_interval = 100, 'iteration' print_interval = 20, 'iteration' trainer.extend(chainer.training.extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport( ['iteration', 'epoch', 'elapsed_time', 'lr', 'main/loss', 'main/roi_loc_loss', 'main/roi_cls_loss', 'main/rpn_loc_loss', 'main/rpn_cls_loss', 'validation/main/map', ]), trigger=print_interval) trainer.extend(extensions.ProgressBar(update_interval=5)) if extensions.PlotReport.available(): trainer.extend( extensions.PlotReport( ['main/loss'], file_name='loss.png', trigger=plot_interval ), trigger=plot_interval ) trainer.extend( DetectionVOCEvaluator( test_iter, model.faster_rcnn, use_07_metric=True, label_names=bbox_label_names), trigger=ManualScheduleTrigger( [100, 500, 1000, 5000, 10000, 20000, 40000, 60000, n_step, n_itrs], 'iteration')) trainer.extend(extensions.dump_graph('main/loss')) trainer.run()
def main(): parser = argparse.ArgumentParser() parser.add_argument('--batchsize', type=int, default=1) parser.add_argument('--lr', type=float, default=1e-3) parser.add_argument('--out', default='result') parser.add_argument('--resume') args = parser.parse_args() comm = chainermn.create_communicator() device = comm.intra_rank faster_rcnn = FasterRCNNVGG16( n_fg_class=len(epic_kitchens_bbox_label_names), pretrained_model='imagenet') faster_rcnn.use_preset('evaluate') model = FasterRCNNTrainChain(faster_rcnn) chainer.cuda.get_device_from_id(device).use() model.to_gpu() train = EpicKitchensBboxDataset(year='2018', split='train') if comm.rank == 0: indices = np.arange(len(train)) else: indices = None train = TransformDataset(train, ('img', 'bbox', 'label', 'scale'), Transform(faster_rcnn)) indices = chainermn.scatter_dataset(indices, comm, shuffle=True) train = train.slice[indices] train_iter = chainer.iterators.SerialIterator(train, batch_size=args.batchsize) optimizer = chainermn.create_multi_node_optimizer( chainer.optimizers.MomentumSGD(), comm) optimizer.setup(model) optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005)) updater = training.updaters.StandardUpdater(train_iter, optimizer, device=device) trainer = training.Trainer(updater, (18, 'epoch'), args.out) trainer.extend(extensions.ExponentialShift('lr', 0.1, init=args.lr), trigger=triggers.ManualScheduleTrigger([12, 15], 'epoch')) if comm.rank == 0: log_interval = 10, 'iteration' trainer.extend( extensions.LogReport(log_name='log.json', trigger=log_interval)) trainer.extend(extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.PrintReport([ 'iteration', 'epoch', 'elapsed_time', 'lr', 'main/loss', 'main/roi_loc_loss', 'main/roi_cls_loss', 'main/rpn_loc_loss', 'main/rpn_cls_loss' ]), trigger=log_interval) trainer.extend(extensions.ProgressBar(update_interval=1)) trainer.extend(extensions.snapshot_object( model.faster_rcnn, 'model_iter_{.updater.iteration}.npz'), trigger=(1, 'epoch')) if args.resume: serializers.load_npz(args.resume, trainer) trainer.run()
def main(): parser = argparse.ArgumentParser( description='ChainerCV training example: Faster R-CNN') parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--lr', '-l', type=float, default=1e-3) parser.add_argument('--out', '-o', default='result', help='Output directory') parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--step_size', '-ss', type=int, default=50000) parser.add_argument('--iteration', '-i', type=int, default=70000) parser.add_argument('--train_data_dir', '-t', default=WIDER_TRAIN_DIR, help='Training dataset (WIDER_train)') parser.add_argument('--train_annotation', '-ta', default=WIDER_TRAIN_ANNOTATION_MAT, help='Annotation file (.mat) for training dataset') parser.add_argument('--val_data_dir', '-v', default=WIDER_VAL_DIR, help='Validation dataset (WIDER_train)') parser.add_argument('--val_annotation', '-va', default=WIDER_VAL_ANNOTATION_MAT, help='Annotation file (.mat) for validation dataset') args = parser.parse_args() np.random.seed(args.seed) # for logging pocessed files logger = logging.getLogger('logger') logger.setLevel(logging.DEBUG) handler = logging.FileHandler(filename='filelog.log') handler.setLevel(logging.DEBUG) logger.addHandler(handler) blacklist = [] with open(BLACKLIST_FILE, 'r') as f: for line in f: l = line.strip() if l: blacklist.append(line.strip()) # train_data = VOCDetectionDataset(split='trainval', year='2007') # test_data = VOCDetectionDataset(split='test', year='2007', # use_difficult=True, return_difficult=True) train_data = WIDERFACEDataset(args.train_data_dir, args.train_annotation, logger=logger, exclude_file_list=blacklist) test_data = WIDERFACEDataset(args.val_data_dir, args.val_annotation) # faster_rcnn = FasterRCNNVGG16(n_fg_class=len(voc_detection_label_names), # pretrained_model='imagenet') faster_rcnn.use_preset('evaluate') model = FasterRCNNTrainChain(faster_rcnn) if args.gpu >= 0: model.to_gpu(args.gpu) chainer.cuda.get_device(args.gpu).use() optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer.WeightDecay(rate=0.0005)) train_data = TransformDataset(train_data, transform) #import pdb; pdb.set_trace() #train_iter = chainer.iterators.MultiprocessIterator( # train_data, batch_size=1, n_processes=None, shared_mem=100000000) train_iter = chainer.iterators.SerialIterator( train_data, batch_size=1) test_iter = chainer.iterators.SerialIterator( test_data, batch_size=1, repeat=False, shuffle=False) updater = chainer.training.updater.StandardUpdater( train_iter, optimizer, device=args.gpu) trainer = training.Trainer( updater, (args.iteration, 'iteration'), out=args.out) trainer.extend( extensions.snapshot_object(model.faster_rcnn, 'snapshot_model.npz'), trigger=(args.iteration, 'iteration')) trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(args.step_size, 'iteration')) log_interval = 20, 'iteration' plot_interval = 3000, 'iteration' print_interval = 20, 'iteration' trainer.extend(chainer.training.extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport( ['iteration', 'epoch', 'elapsed_time', 'lr', 'main/loss', 'main/roi_loc_loss', 'main/roi_cls_loss', 'main/rpn_loc_loss', 'main/rpn_cls_loss', 'validation/main/map', ]), trigger=print_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) if extensions.PlotReport.available(): trainer.extend( extensions.PlotReport( ['main/loss'], file_name='loss.png', trigger=plot_interval ), trigger=plot_interval ) trainer.extend( DetectionVOCEvaluator( test_iter, model.faster_rcnn, use_07_metric=True, label_names=('face',)), trigger=ManualScheduleTrigger( [args.step_size, args.iteration], 'iteration'), invoke_before_training=False) trainer.extend(extensions.dump_graph('main/loss')) #try: # warnings.filterwarnings('error', category=RuntimeWarning) trainer.run()
model_args = { 'n_fg_class': len(voc_bbox_label_names), 'pretrained_model': 'voc0712' } model = helper.get_detector(args.det_type, model_args) if not os.path.exists(args.result): os.mkdir(args.result) if args.load: chainer.serializers.load_npz(args.load, model) model.use_preset('evaluate') if args.det_type == 'faster': train_chain = FasterRCNNTrainChain(model) train_transform = FasterRCNNTransform(model) else: train_chain = SSDMultiboxTrainChain(model) train_transform = SSDTransform(model.coder, model.insize, model.mean) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() train = TransformDataset(datasets_train, train_transform) train_iter = MultiprocessIterator(train, args.batchsize, n_processes=4, shared_mem=100000000)
def main(): parser = argparse.ArgumentParser( description='ChainerCV training example: Faster R-CNN') parser.add_argument( '--dataset_path', '-path', type=str, default="/home/takagi.kazunari/projects/datasets/SUNRGBD_2DBB_fixed") parser.add_argument('--gpu', '-g', type=int, default=-1) parser.add_argument('--lr', '-l', type=float, default=1e-3) parser.add_argument('--out', '-o', default='sunrgbd_result', help='Output directory') parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--step_size', '-ss', type=int, default=50000) parser.add_argument('--iteration', '-i', type=int, default=70000) args = parser.parse_args() np.random.seed(args.seed) train_data = SUNRGBDDataset(args.dataset_path, mode="train") test_data = SUNRGBDDataset(args.dataset_path, mode="test") sunrgbd_bbox_label_names = train_data.get_dataset_label() faster_rcnn = FasterRCNNVGG16(n_fg_class=len(sunrgbd_bbox_label_names), pretrained_model='imagenet') faster_rcnn.use_preset('evaluate') model = FasterRCNNTrainChain(faster_rcnn) if args.gpu >= 0: chainer.cuda.get_device_from_id(args.gpu).use() model.to_gpu() optimizer = chainer.optimizers.MomentumSGD(lr=args.lr, momentum=0.9) optimizer.setup(model) optimizer.add_hook(chainer.optimizer_hooks.WeightDecay(rate=0.0005)) train_data = TransformDataset(train_data, Transform(faster_rcnn)) train_iter = chainer.iterators.MultiprocessIterator(train_data, batch_size=1, n_processes=None, shared_mem=100000000) test_iter = chainer.iterators.SerialIterator(test_data, batch_size=1, repeat=False, shuffle=False) updater = chainer.training.updaters.StandardUpdater(train_iter, optimizer, device=args.gpu) now_time = str(datetime.datetime.today()).replace(" ", "_") save_dir = osp.join(args.out, now_time) trainer = training.Trainer(updater, (args.iteration, 'iteration'), out=save_dir) #save_iteration = [i for i in range(100, args.iteration, args.step_size)] weight_save_interval = 5000, 'iteration' evaluation_interval = 10000, 'iteration' trainer.extend(extensions.snapshot_object( model.faster_rcnn, 'sunrgbd_model_{.updater.iteration}.npz'), trigger=weight_save_interval) trainer.extend(extensions.ExponentialShift('lr', 0.1), trigger=(args.step_size, 'iteration')) log_interval = 20, 'iteration' plot_interval = 10, 'iteration' print_interval = 20, 'iteration' trainer.extend(chainer.training.extensions.observe_lr(), trigger=log_interval) trainer.extend(extensions.LogReport(trigger=log_interval)) trainer.extend(extensions.PrintReport([ 'iteration', 'epoch', 'elapsed_time', 'lr', 'main/loss', 'main/roi_loc_loss', 'main/roi_cls_loss', 'main/rpn_loc_loss', 'main/rpn_cls_loss', 'validation/main/map', ]), trigger=print_interval) trainer.extend(extensions.ProgressBar(update_interval=10)) if extensions.PlotReport.available(): trainer.extend(extensions.PlotReport(['main/loss'], file_name='loss.png', trigger=plot_interval), trigger=plot_interval) #do_evaluation_iteration = [i for i in range(0, args.iteration, 500)] trainer.extend(DetectionVOCEvaluator(test_iter, model.faster_rcnn, use_07_metric=True, label_names=sunrgbd_bbox_label_names), trigger=evaluation_interval) trainer.extend(extensions.dump_graph('main/loss')) trainer.run()