def test_assert_is_point_dataset(self): if self.valid: assert_is_point_dataset(self.dataset, self.n_point, 20, self.no_mask) else: with self.assertRaises(AssertionError): assert_is_point_dataset(self.dataset, self.n_point, 20, self.no_mask)
def test_cub_point_dataset(self): assert_is_point_dataset(self.dataset, n_point=15, n_example=10) idx = np.random.choice(np.arange(10)) if self.return_bb: if self.return_prob_map: bb = self.dataset[idx][-2] else: bb = self.dataset[idx][-1] assert_is_bbox(bb[np.newaxis]) if self.return_prob_map: img = self.dataset[idx][0] prob_map = self.dataset[idx][-1] self.assertEqual(prob_map.dtype, np.float32) self.assertEqual(prob_map.shape, img.shape[1:]) self.assertTrue(np.min(prob_map) >= 0) self.assertTrue(np.max(prob_map) <= 1)
def test_coco_keypoint_dataset(self): human_id = 0 assert_is_point_dataset( self.dataset, len(coco_keypoint_names[human_id]), n_example=30) for _ in range(10): i = np.random.randint(0, len(self.dataset)) img, point, _, label, bbox = self.dataset[i][:5] assert_is_bbox(bbox, img.shape[1:]) self.assertEqual(len(bbox), len(point)) self.assertIsInstance(label, np.ndarray) self.assertEqual(label.dtype, np.int32) self.assertEqual(label.shape, (point.shape[0],)) if self.return_area: for _ in range(10): i = np.random.randint(0, len(self.dataset)) _, point, _, _, _, area = self.dataset[i][:6] self.assertIsInstance(area, np.ndarray) self.assertEqual(area.dtype, np.float32) self.assertEqual(area.shape, (point.shape[0],)) if self.return_crowded: for _ in range(10): i = np.random.randint(0, len(self.dataset)) example = self.dataset[i] crowded = example[-1] point = example[1] self.assertIsInstance(crowded, np.ndarray) self.assertEqual(crowded.dtype, np.bool) self.assertEqual(crowded.shape, (point.shape[0],)) if not self.use_crowded: np.testing.assert_equal(crowded, 0)