def validate_X(self, X): obj = copy.deepcopy(X) if 'ldf_' not in obj: obj = Development().fit_transform(obj) if len(obj.ddims) - len(obj.ldf_.ddims) == 1: obj = TailConstant().fit_transform(obj) return obj
def validate_X(self, X): obj = X.copy() if "ldf_" not in obj: obj = Development().fit_transform(obj) if len(obj.ddims) - len(obj.ldf_.ddims) == 1: obj = TailConstant().fit_transform(obj) return obj
def validate_X(self, X): obj = copy.copy(X) if 'ldf_' not in obj: obj = Development().fit_transform(obj) if len(obj.ddims) - len(obj.ldf_.ddims) == 1: obj = TailConstant().fit_transform(obj) for item in ['cdf_', 'ldf_', 'average_']: setattr(self, item, getattr(obj, item, None)) return obj
def validate_X(self, X): obj = copy.deepcopy(X) if obj.__dict__.get('ldf_', None) is None: obj = Development().fit_transform(obj) if len(obj.ddims) - len(obj.ldf_.ddims) == 1: obj = TailConstant().fit_transform(obj) self.cdf_ = obj.__dict__.get('cdf_', None) self.ldf_ = obj.__dict__.get('ldf_', None) self.average_ = obj.__dict__.get('average_', None) return obj