def get_positives_stat(channel): X, y = get_data(channel) print('# of ' + channel + ' frames = ' + str(X.shape[0])) percent_positives = 100 * float(len(filter(lambda x: x == 1, y))) / len(y) print('% of positives on ' + channel + ': ' + str(percent_positives)) return percent_positives
def get_positives_stat(channel): X, y = get_data(channel) print('# of ' + channel + ' frames = ' + str(X.shape[0])) percent_positives = 100*float(len(filter(lambda x: x == 1, y))) / len(y) print('% of positives on ' + channel + ': ' + str(percent_positives)) return percent_positives
def main(): X_BBC, y_BBC = get_data('BBC') X_CNN, y_CNN = get_data('CNN') print('# of BBC frames = ' + str(X_BBC.shape[0])) print('# of CNN frames = ' + str(X_CNN.shape[0])) clf = SVC(C=0.5, cache_size=2000, class_weight='auto', kernel='linear') print('Training...') t0 = time.clock() clf.fit(X_BBC, y_BBC) trainTime = time.clock() - t0 print('Training time: ' + str(trainTime) + 's\n') print('Testing...') t0 = time.clock() score = clf.score(X_CNN, y_CNN) testTime = time.clock() - t0 print('Testing time: ' + str(testTime) + 's\n') print('Total time: ' + str(trainTime + testTime) + 's\n') print('score = ' + str(score))
def main(): X_BBC, y_BBC = get_data('BBC') X_CNN, y_CNN = get_data('CNN') print('# of BBC frames = ' + str(X_BBC.shape[0])) print('# of CNN frames = ' + str(X_CNN.shape[0])) clf = RandomForestClassifier(n_estimators=10) print('Training...') t0 = time.clock() clf.fit(X_BBC, y_BBC) trainTime = time.clock() - t0 print('Training time: ' + str(trainTime) + 's\n') print('Testing...') t0 = time.clock() score = clf.score(X_CNN, y_CNN) testTime = time.clock() - t0 print('Testing time: ' + str(testTime) + 's\n') print('Total time: ' + str(trainTime + testTime) + 's\n') print('score = ' + str(score))
def main(): X_BBC, y_BBC = get_data('BBC') X_CNN, y_CNN = get_data('CNN') print('# of BBC frames = ' + str(X_BBC.shape[0])) print('# of CNN frames = ' + str(X_CNN.shape[0])) clf = LDA() print('Training...') t0 = time.clock() clf.fit(X_BBC.toarray(), y_BBC) trainTime = time.clock() - t0 print('Training time: ' + str(trainTime) + 's\n') print('Testing...') t0 = time.clock() score = clf.score(X_CNN.toarray(), y_CNN) testTime = time.clock() - t0 print('Testing time: ' + str(testTime) + 's\n') print('Total time: ' + str(trainTime + testTime) + 's\n') print('score = ' + str(score))
def main(): n_neighbors = 5 XB, yB = get_data('BBC') XC, yC = get_data('CNN') print 'Number of BBC frames = ' + str(XB.shape[0]) + '\n' print 'Number of CNN frames = ' + str(XC.shape[0]) clf = neighbors.KNeighborsClassifier(n_neighbors) print('Training...') t0 = time.clock() clf.fit(XB, yB) trainTime = time.clock() - t0 print('Training time: ' + str(trainTime) + 's\n') print('Testing...') t0 = time.clock() score = clf.score(XC[:10000], yC[:10000]) testTime = time.clock() - t0 print('Testing time: ' + str(testTime) + 's\n') print('Total time: ' + str(trainTime + testTime) + 's\n') print 'score = ' + str(score)