예제 #1
0
파일: test_n_net.py 프로젝트: pajmd/ci
def _test_hidden_deltas():
    mynet = Network(4, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1, 1])
    print(mynet.output_ouputs)
    mynet.matrix_who = np.matrix([[0.11, 0.12, 0.13], [0.21, 0.22, 0.23]])
    mynet.output_ouputs = np.matrix([[0.1, 0.2, 0.3]])
    target = [0.9, 0.8, 0.7]
    ods = mynet.get_output_deltas(target)
    mynet.matrix_who = np.matrix([[1, 2, 3], [4, 5, 6]])
    mynet.hidden_outputs = np.matrix([[0.5, 0.6]])
    ods = np.matrix([[0.05, 0.06, 0.07]])
    hds = mynet.get_hidden_deltas(ods)

    np.testing.assert_array_almost_equal(
        np.matrix([mynet.gradient(0.5) * 0.38,
                   mynet.gradient(0.6) * 0.92]), hds)
예제 #2
0
파일: test_n_net.py 프로젝트: pajmd/ci
def _test_back_propagate():
    mynet = Network(4, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1, 1])
    print(mynet.output_ouputs)
    mynet.matrix_who = np.matrix([[0.11, 0.12, 0.13], [0.21, 0.22, 0.23]])
    mynet.output_ouputs = np.matrix([[0.1, 0.2, 0.3]])
    target = [0.9, 0.8, 0.7]
    mynet.back_propagate(target)
예제 #3
0
파일: test_n_net.py 프로젝트: pajmd/ci
def _test_ouput_deltas():
    mynet = Network(4, 2, 3)
    mynet.create_connections()
    mynet.feed_forward([1, 1, 1, 1])
    print(mynet.output_ouputs)
    mynet.matrix_who = np.matrix([[0.11, 0.12, 0.13], [0.21, 0.22, 0.23]])
    mynet.output_ouputs = np.matrix([[0.1, 0.2, 0.3]])
    target = [0.9, 0.8, 0.7]
    ods = mynet.get_output_deltas(target)
    np.testing.assert_array_almost_equal(
        np.matrix([(0.9 - 0.1) * mynet.gradient(0.1),
                   (0.8 - 0.2) * mynet.gradient(0.2),
                   (0.7 - 0.3) * mynet.gradient(0.3)]), ods)
예제 #4
0
파일: test_n_net.py 프로젝트: pajmd/ci
def _test_update_who():
    mynet = Network(3, 4, 3)
    mynet.create_connections()

    mynet.matrix_who = np.matrix([[-0.5910955, 0.75623487, -0.94522481],
                                  [0.34093502, -0.1653904, 0.11737966],
                                  [-0.71922612, -0.60379702, 0.60148914],
                                  [0.93652315, -0.37315164, 0.38464523]])

    d = [0.40795614, 0.62674606, 0.23841622, 0.49377636]
    d = [1, 2, 3]
    mynet.hidden_outputs = np.array(d, dtype=float)
    output_deltas = np.array([0.10676222, -0.11685494, -0.12631629],
                             dtype=float)
    # c = output_deltas * h
    #result is addition of c to each row of matric_who
    matrix_who_expected = np.matrix([[-0.56931835, 0.73239903, -0.97099057],
                                     [0.37439142, -0.20200958, 0.07779554],
                                     [-0.7064992, -0.61772708, 0.58643121],
                                     [0.96288148, -0.40200175, 0.35345923]])
    mynet.update_hidden_output_weight_new(output_deltas, 0.5)
    assert mynet.matrix_who == matrix_who_expected