예제 #1
0
class ChatServicer(chatbot_pb2_grpc.ChatBotServiceServicer):
    def __init__(self):
        # 提前加载各种模型
        self.classify = Classify()
        self.recall = Recall()
        self.sort = DnnSort()
        self.chatbot = Chatbot()
        self.message_manager = MessageManager()

    def Chatbot(self, request, context):
        user_id = request.user_id
        message = request.user_message
        create_time = request.create_time
        attention, prob = self.classify.predict(message)
        if attention == "QA":
            # 实现对对话数据的保存
            self.message_manager.user_message_pipeline(
                user_id,
                message,
                create_time,
                attention,
                entity=message["entity"])
            recall_list, entity = self.recall.predict(message)
            user_response = self.sort.predict(message, recall_list)

        else:
            # 实现对对话数据的保存
            self.message_manager.user_message_pipeline(
                user_id,
                message,
                create_time,
                attention,
                entity=message["entity"])
            user_response = self.chatbot.predict(message)

        self.message_manager.bot_message_pipeline(user_id, user_response)

        create_time = int(time.time())
        return chatbot_pb2.ResponsedMessage(user_response=user_response,
                                            create_time=create_time)
예제 #2
0
    ws.build_vocab()
    print(len(ws))
    pickle.dump(ws, open(config.chatbot_ws_by_word_input_path, "wb"))

    ws = Word_sequence()
    for line in open(config.chatbot_target_path, "r",
                     encoding="utf-8").readlines():
        ws.fit(line.strip().split())
    ws.build_vocab()
    print(len(ws))
    pickle.dump(ws, open(config.chatbot_ws_by_word_target_path, "wb"))


def train_seq2seq():
    for i in range(10):
        train(i)


if __name__ == '__main__':
    # save_ws()
    # for idx,(input,target,input_length,target_length) in enumerate(dataloader):
    #     print(input)
    #     print(target)
    #     print(input_length)
    #     print(target_length)
    #     break
    # train_seq2seq()
    chatbot = Chatbot()
    while True:
        print(chatbot.predict(input("请输入:")))