def main(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT logger.info("Extracting attributes") decoder = nn.DataParallel(decoder) indices = [0, 1, 2, 3, 4, 10, 11, 17, 19] with torch.no_grad(): p = Predictions(cfg, minibatch_gpu=4) for i in indices: p.evaluate(logger, mapping_fl, decoder, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2, i)
def train(cfg, logger, local_rank, world_size, distributed): torch.cuda.set_device(local_rank) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, dlatent_avg_beta=cfg.MODEL.DLATENT_AVG_BETA, style_mixing_prob=cfg.MODEL.STYLE_MIXING_PROB, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(local_rank) model.train() if local_rank == 0: model_s = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model_s.cuda(local_rank) model_s.eval() model_s.requires_grad_(False) if distributed: model = nn.parallel.DistributedDataParallel( model, device_ids=[local_rank], broadcast_buffers=False, bucket_cap_mb=25, find_unused_parameters=True) model.device_ids = None decoder = model.module.decoder encoder = model.module.encoder discriminator = model.module.discriminator mapping_fl = model.module.mapping_fl dlatent_avg = model.module.dlatent_avg else: decoder = model.decoder encoder = model.encoder discriminator = model.discriminator mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg count_param_override.print = lambda a: logger.info(a) logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 decoder_optimizer = LREQAdam([{ 'params': decoder.parameters() }, { 'params': mapping_fl.parameters() }], lr=cfg.TRAIN.BASE_LEARNING_RATE, betas=(cfg.TRAIN.ADAM_BETA_0, cfg.TRAIN.ADAM_BETA_1), weight_decay=0) encoder_optimizer = LREQAdam([ { 'params': encoder.parameters() }, ], lr=cfg.TRAIN.BASE_LEARNING_RATE, betas=(cfg.TRAIN.ADAM_BETA_0, cfg.TRAIN.ADAM_BETA_1), weight_decay=0) discriminator_optimizer = LREQAdam([ { 'params': discriminator.parameters() }, ], lr=cfg.TRAIN.BASE_LEARNING_RATE, betas=(cfg.TRAIN.ADAM_BETA_0, cfg.TRAIN.ADAM_BETA_1), weight_decay=0) scheduler = ComboMultiStepLR(optimizers={ 'encoder_optimizer': encoder_optimizer, 'discriminator_optimizer': discriminator_optimizer, 'decoder_optimizer': decoder_optimizer }, milestones=cfg.TRAIN.LEARNING_DECAY_STEPS, gamma=cfg.TRAIN.LEARNING_DECAY_RATE, reference_batch_size=32, base_lr=cfg.TRAIN.LEARNING_RATES) model_dict = { 'discriminator': discriminator, 'encoder': encoder, 'generator': decoder, 'mapping_fl': mapping_fl, 'dlatent_avg': dlatent_avg } if local_rank == 0: model_dict['discriminator_s'] = model_s.discriminator model_dict['encoder_s'] = model_s.encoder model_dict['generator_s'] = model_s.decoder model_dict['mapping_fl_s'] = model_s.mapping_fl tracker = LossTracker(cfg.OUTPUT_DIR) checkpointer = Checkpointer( cfg, model_dict, { 'encoder_optimizer': encoder_optimizer, 'discriminator_optimizer': discriminator_optimizer, 'decoder_optimizer': decoder_optimizer, 'scheduler': scheduler, 'tracker': tracker }, logger=logger, save=local_rank == 0) extra_checkpoint_data = checkpointer.load() logger.info("Starting from epoch: %d" % (scheduler.start_epoch())) arguments.update(extra_checkpoint_data) layer_to_resolution = decoder.layer_to_resolution dataset = TFRecordsDataset(cfg, logger, rank=local_rank, world_size=world_size, buffer_size_mb=1024, channels=cfg.MODEL.CHANNELS) rnd = np.random.RandomState(3456) latents = rnd.randn(32, cfg.MODEL.LATENT_SPACE_SIZE) samplez = torch.tensor(latents).float().cuda() lod2batch = lod_driver.LODDriver(cfg, logger, world_size, dataset_size=len(dataset) * world_size) if cfg.DATASET.SAMPLES_PATH: path = cfg.DATASET.SAMPLES_PATH src = [] with torch.no_grad(): for filename in list(os.listdir(path))[:32]: img = np.asarray(Image.open(os.path.join(path, filename))) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] src.append(x) sample = torch.stack(src) else: dataset.reset(cfg.DATASET.MAX_RESOLUTION_LEVEL, 32) sample = next(make_dataloader(cfg, logger, dataset, 32, local_rank)) sample = (sample / 127.5 - 1.) lod2batch.set_epoch(scheduler.start_epoch(), [encoder_optimizer, decoder_optimizer]) for epoch in range(scheduler.start_epoch(), cfg.TRAIN.TRAIN_EPOCHS): model.train() lod2batch.set_epoch(epoch, [encoder_optimizer, decoder_optimizer]) logger.info( "Batch size: %d, Batch size per GPU: %d, LOD: %d - %dx%d, blend: %.3f, dataset size: %d" % (lod2batch.get_batch_size(), lod2batch.get_per_GPU_batch_size(), lod2batch.lod, 2**lod2batch.get_lod_power2(), 2** lod2batch.get_lod_power2(), lod2batch.get_blend_factor(), len(dataset) * world_size)) dataset.reset(lod2batch.get_lod_power2(), lod2batch.get_per_GPU_batch_size()) batches = make_dataloader(cfg, logger, dataset, lod2batch.get_per_GPU_batch_size(), local_rank) scheduler.set_batch_size(lod2batch.get_batch_size(), lod2batch.lod) model.train() need_permute = False epoch_start_time = time.time() i = 0 with torch.autograd.profiler.profile(use_cuda=True, enabled=False) as prof: for x_orig in tqdm(batches): i += 1 with torch.no_grad(): if x_orig.shape[0] != lod2batch.get_per_GPU_batch_size(): continue if need_permute: x_orig = x_orig.permute(0, 3, 1, 2) x_orig = (x_orig / 127.5 - 1.) blend_factor = lod2batch.get_blend_factor() needed_resolution = layer_to_resolution[lod2batch.lod] x = x_orig if lod2batch.in_transition: needed_resolution_prev = layer_to_resolution[ lod2batch.lod - 1] x_prev = F.avg_pool2d(x_orig, 2, 2) x_prev_2x = F.interpolate(x_prev, needed_resolution) x = x * blend_factor + x_prev_2x * (1.0 - blend_factor) x.requires_grad = True loss_d = model(x, lod2batch.lod, blend_factor, d_train=True, ae=False) tracker.update(dict(loss_d=loss_d)) loss_d.backward() discriminator_optimizer.step() decoder_optimizer.zero_grad() discriminator_optimizer.zero_grad() loss_g = model(x, lod2batch.lod, blend_factor, d_train=False, ae=False) tracker.update(dict(loss_g=loss_g)) loss_g.backward() decoder_optimizer.step() decoder_optimizer.zero_grad() discriminator_optimizer.zero_grad() lae = model(x, lod2batch.lod, blend_factor, d_train=True, ae=True) tracker.update(dict(lae=lae)) (lae).backward() encoder_optimizer.step() decoder_optimizer.step() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() if local_rank == 0: betta = 0.5**(lod2batch.get_batch_size() / (10 * 1000.0)) model_s.lerp(model, betta) epoch_end_time = time.time() per_epoch_ptime = epoch_end_time - epoch_start_time lod_for_saving_model = lod2batch.lod lod2batch.step() if local_rank == 0: if lod2batch.is_time_to_save(): checkpointer.save("model_tmp_intermediate_lod%d" % lod_for_saving_model) if lod2batch.is_time_to_report(): save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) scheduler.step() if local_rank == 0: checkpointer.save("model_tmp_lod%d" % lod_for_saving_model) save_sample(lod2batch, tracker, sample, samplez, x, logger, model_s, cfg, encoder_optimizer, decoder_optimizer) logger.info("Training finish!... save training results") if local_rank == 0: checkpointer.save("model_final").wait()
def _main(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() last_epoch = list(extra_checkpoint_data['auxiliary'] ['scheduler'].values())[0]['last_epoch'] logger.info("Model trained for %d epochs" % last_epoch) model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): layer_count = cfg.MODEL.LAYER_COUNT zlist = [] for i in range(x.shape[0]): Z, _ = model.encode(x[i][None, ...], layer_count - 1, 1) zlist.append(Z) Z = torch.cat(zlist) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): decoded = [] for i in range(x.shape[0]): r = model.decoder(x[i][None, ...], layer_count - 1, 1, noise=True) decoded.append(r) return torch.cat(decoded) path = cfg.DATASET.STYLE_MIX_PATH im_size = 2**(cfg.MODEL.LAYER_COUNT + 1) src_originals = [] for i in range(src_len): try: im = np.asarray(Image.open(os.path.join(path, 'src/%d.png' % i))) except FileNotFoundError: im = np.asarray(Image.open(os.path.join(path, 'src/%d.jpg' % i))) im = im.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] factor = x.shape[2] // im_size if factor != 1: x = torch.nn.functional.avg_pool2d(x[None, ...], factor, factor)[0] assert x.shape[2] == im_size src_originals.append(x) src_originals = torch.stack([x for x in src_originals]) dst_originals = [] for i in range(dst_len): try: im = np.asarray(Image.open(os.path.join(path, 'dst/%d.png' % i))) except FileNotFoundError: im = np.asarray(Image.open(os.path.join(path, 'dst/%d.jpg' % i))) im = im.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] factor = x.shape[2] // im_size if factor != 1: x = torch.nn.functional.avg_pool2d(x[None, ...], factor, factor)[0] assert x.shape[2] == im_size dst_originals.append(x) dst_originals = torch.stack([x for x in dst_originals]) src_latents = encode(src_originals) src_images = decode(src_latents) dst_latents = encode(dst_originals) dst_images = decode(dst_latents) canvas = np.zeros([3, im_size * (dst_len + 1), im_size * (src_len + 1)]) os.makedirs('style_mixing/output/%s/' % cfg.NAME, exist_ok=True) for i in range(src_len): save_image(src_originals[i] * 0.5 + 0.5, 'style_mixing/output/%s/source_%d.png' % (cfg.NAME, i)) place(canvas, src_originals[i], 1 + i, 0) for i in range(dst_len): save_image(dst_originals[i] * 0.5 + 0.5, 'style_mixing/output/%s/dst_coarse_%d.png' % (cfg.NAME, i)) place(canvas, dst_originals[i], 0, 1 + i) style_ranges = [range(0, 4)] * 3 + [range(4, 8)] * 2 + [ range(8, layer_count * 2) ] def mix_styles(style_src, style_dst, r): style = style_dst.clone() style[:, r] = style_src[:, r] return style for row in range(dst_len): row_latents = torch.stack([dst_latents[row]] * src_len) style = mix_styles(src_latents, row_latents, style_ranges[row]) rec = model.decoder(style, layer_count - 1, 1, noise=True) for j in range(rec.shape[0]): save_image( rec[j] * 0.5 + 0.5, 'style_mixing/output/%s/rec_coarse_%d_%d.png' % (cfg.NAME, row, j)) place(canvas, rec[j], 1 + j, 1 + row) save_image(torch.Tensor(canvas), 'style_mixing/output/%s/stylemix.png' % cfg.NAME)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) rnd = np.random.RandomState(4) latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE) path = cfg.DATASET.SAMPLES_PATH im_size = 2**(cfg.MODEL.LAYER_COUNT + 1) pathA = '00001.png' pathB = '00022.png' pathC = '00077.png' pathD = '00016.png' def open_image(filename): img = np.asarray(Image.open(path + '/' + filename)) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] factor = x.shape[2] // im_size if factor != 1: x = torch.nn.functional.avg_pool2d(x[None, ...], factor, factor)[0] assert x.shape[2] == im_size _latents = encode(x[None, ...].cuda()) latents = _latents[0, 0] return latents def make(w): with torch.no_grad(): w = w[None, None, ...].repeat(1, model.mapping_fl.num_layers, 1) x_rec = decode(w) return x_rec wa = open_image(pathA) wb = open_image(pathB) wc = open_image(pathC) wd = open_image(pathD) height = 7 width = 7 images = [] for i in range(height): for j in range(width): kv = i / (height - 1.0) kh = j / (width - 1.0) ka = (1.0 - kh) * (1.0 - kv) kb = kh * (1.0 - kv) kc = (1.0 - kh) * kv kd = kh * kv w = ka * wa + kb * wb + kc * wc + kd * wd interpolated = make(w) images.append(interpolated) images = torch.cat(images) save_image(images * 0.5 + 0.5, 'make_figures/output/%s/interpolations.png' % cfg.NAME, nrow=width) save_image(images * 0.5 + 0.5, 'make_figures/output/%s/interpolations.jpg' % cfg.NAME, nrow=width)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=None, truncation_cutoff=None, style_mixing_prob=cfg.MODEL.STYLE_MIXING_PROB, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_fl_s': mapping_fl, 'dlatent_avg_s': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() last_epoch = list(extra_checkpoint_data['auxiliary'] ['scheduler'].values())[0]['last_epoch'] logger.info("Model trained for %d epochs" % last_epoch) model.eval() layer_count = cfg.MODEL.LAYER_COUNT logger.info("Evaluating FID metric") model.decoder = nn.DataParallel(decoder) with torch.no_grad(): ppl = FID(cfg, num_images=50000, minibatch_size=16 * torch.cuda.device_count()) ppl.evaluate(logger, mapping_fl, model.decoder, model, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model( startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) rnd = np.random.RandomState(5) latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE) path = cfg.DATASET.SAMPLES_PATH paths = list(os.listdir(path)) paths = sorted(paths) random.seed(3456) random.shuffle(paths) def make(paths): canvas = [] with torch.no_grad(): for filename in paths: img = np.asarray(Image.open(path + '/' + filename)) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] latents = encode(x[None, ...].cuda()) f = decode(latents) r = torch.cat([x[None, ...].detach().cpu(), f.detach().cpu()], dim=3) canvas.append(r) return canvas canvas = make(paths[:40]) canvas = torch.cat(canvas, dim=0) save_image(canvas * 0.5 + 0.5, 'make_figures/output/reconstructions_bed_1.png', nrow=4, pad_value=1.0) canvas = make(paths[40:80]) canvas = torch.cat(canvas, dim=0) save_image(canvas * 0.5 + 0.5, 'make_figures/output/reconstructions_bed_2.png', nrow=4, pad_value=1.0)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model( startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, style_mixing_prob=cfg.MODEL.STYLE_MIXING_PROB, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT decoder = nn.DataParallel(decoder) im_size = 2 ** (cfg.MODEL.LAYER_COUNT + 1) with torch.no_grad(): draw_uncurated_result_figure(cfg, 'make_figures/output/%s/generations.jpg' % cfg.NAME, model, cx=0, cy=0, cw=im_size, ch=im_size, rows=6, lods=[0, 0, 0, 1, 1, 2], seed=5)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) rnd = np.random.RandomState(5) latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE) dataset = TFRecordsDataset(cfg, logger, rank=0, world_size=1, buffer_size_mb=10, channels=cfg.MODEL.CHANNELS, train=False) dataset.reset(cfg.DATASET.MAX_RESOLUTION_LEVEL, 10) b = iter(make_dataloader(cfg, logger, dataset, 10, 0, numpy=True)) def make(sample): canvas = [] with torch.no_grad(): for img in sample: x = torch.tensor(np.asarray(img, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] latents = encode(x[None, ...].cuda()) f = decode(latents) r = torch.cat([x[None, ...].detach().cpu(), f.detach().cpu()], dim=3) canvas.append(r) return canvas sample = next(b) canvas = make(sample) canvas = torch.cat(canvas, dim=0) save_image(canvas * 0.5 + 0.5, 'make_figures/reconstructions_ffhq_real_1.png', nrow=2, pad_value=1.0) sample = next(b) canvas = make(sample) canvas = torch.cat(canvas, dim=0) save_image(canvas * 0.5 + 0.5, 'make_figures/reconstructions_ffhq_real_2.png', nrow=2, pad_value=1.0)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) path = 'dataset_samples/faces/pioneer256x256' paths = list(os.listdir(path)) def make(paths): with torch.no_grad(): for filename in paths: img = np.asarray(Image.open(path + '/' + filename)) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] while x.shape[2] != model.decoder.layer_to_resolution[6]: x = F.avg_pool2d(x, 2, 2) latents = encode(x[None, ...].cuda()) f = decode(latents) r = torch.cat([x[None, ...].detach().cpu(), f.detach().cpu()], dim=3) os.makedirs('make_figures/output/pioneer/', exist_ok=True) save_image(f.detach().cpu() * 0.5 + 0.5, 'make_figures/output/pioneer/%s_alae.png' % filename[:-9], nrow=1, pad_value=1.0) make(paths)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) path = cfg.DATASET.SAMPLES_PATH im_size = 2**(cfg.MODEL.LAYER_COUNT + 1) def do_attribute_traversal(path, attrib_idx, start, end): img = np.asarray(Image.open(path)) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] factor = x.shape[2] // im_size if factor != 1: x = torch.nn.functional.avg_pool2d(x[None, ...], factor, factor)[0] assert x.shape[2] == im_size _latents = encode(x[None, ...].cuda()) latents = _latents[0, 0] latents -= model.dlatent_avg.buff.data[0] w0 = torch.tensor(np.load("principal_directions/direction_%d.npy" % attrib_idx), dtype=torch.float32) attr0 = (latents * w0).sum() latents = latents - attr0 * w0 def update_image(w): with torch.no_grad(): w = w + model.dlatent_avg.buff.data[0] w = w[None, None, ...].repeat(1, model.mapping_fl.num_layers, 1) layer_idx = torch.arange( model.mapping_fl.num_layers)[np.newaxis, :, np.newaxis] cur_layers = (7 + 1) * 2 mixing_cutoff = cur_layers styles = torch.where(layer_idx < mixing_cutoff, w, _latents[0]) x_rec = decode(styles) return x_rec traversal = [] r = 7 inc = (end - start) / (r - 1) for i in range(r): W = latents + w0 * (attr0 + start) im = update_image(W) traversal.append(im) attr0 += inc res = torch.cat(traversal) indices = [0, 1, 2, 3, 4, 10, 11, 17, 19] labels = [ "gender", "smile", "attractive", "wavy-hair", "young", "big_lips", "big_nose", "chubby", "glasses", ] save_image(res * 0.5 + 0.5, "make_figures/output/%s/traversal_%s.jpg" % (cfg.NAME, labels[indices.index(attrib_idx)]), pad_value=1) do_attribute_traversal(path + '/00049.png', 0, 0.6, -34) do_attribute_traversal(path + '/00125.png', 1, -3, 15.0) do_attribute_traversal(path + '/00057.png', 3, -2, 30.0) do_attribute_traversal(path + '/00031.png', 4, -10, 30.0) do_attribute_traversal(path + '/00088.png', 10, -0.3, 30.0) do_attribute_traversal(path + '/00004.png', 11, -25, 20.0) do_attribute_traversal(path + '/00012.png', 17, -40, 40.0) do_attribute_traversal(path + '/00017.png', 19, 0, 30.0)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model(startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, 1.2 * ones, ones) x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) logger.info("Evaluating PPL metric") decoder = nn.DataParallel(decoder) with torch.no_grad(): ppl = PPL(cfg, num_samples=50000, epsilon=1e-4, space='w', sampling='full', minibatch_size=16 * torch.cuda.device_count()) ppl.evaluate(logger, mapping_fl, decoder, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2, celeba_style=cfg.PPL_CELEBA_ADJUSTMENT) with torch.no_grad(): ppl = PPL(cfg, num_samples=50000, epsilon=1e-4, space='w', sampling='end', minibatch_size=16 * torch.cuda.device_count()) ppl.evaluate(logger, mapping_fl, decoder, cfg.DATASET.MAX_RESOLUTION_LEVEL - 2, celeba_style=cfg.PPL_CELEBA_ADJUSTMENT)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model( startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * cfg.MODEL.LAYER_COUNT)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, 1.0 * ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) path = cfg.DATASET.SAMPLES_PATH # path = 'dataset_samples/faces/realign1024x1024_paper' im_size = 2 ** (cfg.MODEL.LAYER_COUNT + 1) paths = list(os.listdir(path)) paths = sorted(paths) random.seed(5) random.shuffle(paths) def move_to(list, item, new_index): list.remove(item) list.insert(new_index, item) # move_to(paths, '00026.png', 0) # move_to(paths, '00074.png', 1) # move_to(paths, '00134.png', 2) # move_to(paths, '00036.png', 3) def make(paths): src = [] for filename in paths: img = np.asarray(Image.open(path + '/' + filename)) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] factor = x.shape[2] // im_size if factor != 1: x = torch.nn.functional.avg_pool2d(x[None, ...], factor, factor)[0] assert x.shape[2] == im_size src.append(x) with torch.no_grad(): reconstructions = [] for s in src: latents = encode(s[None, ...]) reconstructions.append(decode(latents).cpu().detach().numpy()) return src, reconstructions def chunker_list(seq, size): return list((seq[i::size] for i in range(size))) final = chunker_list(paths, 4) path0, path1, path2, path3 = final path0.reverse() path1.reverse() path2.reverse() path3.reverse() src0, rec0 = make(path0) src1, rec1 = make(path1) src2, rec2 = make(path2) src3, rec3 = make(path3) initial_resolution = im_size lods_down = 1 padding_step = 4 width = 0 height = 0 current_padding = 0 final_resolution = initial_resolution for _ in range(lods_down): final_resolution /= 2 for i in range(lods_down + 1): width += current_padding * 2 ** (lods_down - i) height += current_padding * 2 ** (lods_down - i) current_padding += padding_step width += 2 ** (lods_down + 1) * final_resolution height += (lods_down + 1) * initial_resolution width = int(width) height = int(height) def make_part(current_padding, src, rec): canvas = np.ones([3, height + 20, width + 10]) padd = 0 initial_padding = current_padding height_padding = 0 for i in range(lods_down + 1): for x in range(2 ** i): for y in range(2 ** i): try: ims = src.pop() imr = rec.pop()[0] ims = ims.cpu().detach().numpy() imr = imr res = int(initial_resolution / 2 ** i) ims = resize(ims, (3, initial_resolution / 2 ** i, initial_resolution / 2 ** i)) imr = resize(imr, (3, initial_resolution / 2 ** i, initial_resolution / 2 ** i)) place(canvas, ims, current_padding + x * (2 * res + current_padding), i * initial_resolution + height_padding + y * (res + current_padding)) place(canvas, imr, current_padding + res + x * (2 * res + current_padding), i * initial_resolution + height_padding + y * (res + current_padding)) except IndexError: return canvas height_padding += initial_padding * 2 current_padding -= padding_step padd += padding_step return canvas canvas = [make_part(current_padding, src0, rec0), make_part(current_padding, src1, rec1), make_part(current_padding, src2, rec2), make_part(current_padding, src3, rec3)] canvas = np.concatenate(canvas, axis=2) print('Saving image') save_path = 'make_figures/output/%s/reconstructions_multiresolution.png' % cfg.NAME os.makedirs(os.path.dirname(save_path), exist_ok=True) save_image(torch.Tensor(canvas), save_path)
def sample(cfg, logger): torch.cuda.set_device(0) model = Model( startf=cfg.MODEL.START_CHANNEL_COUNT, layer_count=cfg.MODEL.LAYER_COUNT, maxf=cfg.MODEL.MAX_CHANNEL_COUNT, latent_size=cfg.MODEL.LATENT_SPACE_SIZE, truncation_psi=cfg.MODEL.TRUNCATIOM_PSI, truncation_cutoff=cfg.MODEL.TRUNCATIOM_CUTOFF, mapping_layers=cfg.MODEL.MAPPING_LAYERS, channels=cfg.MODEL.CHANNELS, generator=cfg.MODEL.GENERATOR, encoder=cfg.MODEL.ENCODER) model.cuda(0) model.eval() model.requires_grad_(False) decoder = model.decoder encoder = model.encoder mapping_tl = model.mapping_tl mapping_fl = model.mapping_fl dlatent_avg = model.dlatent_avg logger.info("Trainable parameters generator:") count_parameters(decoder) logger.info("Trainable parameters discriminator:") count_parameters(encoder) arguments = dict() arguments["iteration"] = 0 model_dict = { 'discriminator_s': encoder, 'generator_s': decoder, 'mapping_tl_s': mapping_tl, 'mapping_fl_s': mapping_fl, 'dlatent_avg': dlatent_avg } checkpointer = Checkpointer(cfg, model_dict, {}, logger=logger, save=False) extra_checkpoint_data = checkpointer.load() model.eval() layer_count = cfg.MODEL.LAYER_COUNT def encode(x): Z, _ = model.encode(x, layer_count - 1, 1) Z = Z.repeat(1, model.mapping_fl.num_layers, 1) return Z def decode(x): layer_idx = torch.arange(2 * layer_count)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) # x = torch.lerp(model.dlatent_avg.buff.data, x, coefs) return model.decoder(x, layer_count - 1, 1, noise=True) path = 'dataset_samples/faces/realign1024x1024' paths = list(os.listdir(path)) paths.sort() paths_backup = paths[:] randomize = bimpy.Bool(True) current_file = bimpy.String("") ctx = bimpy.Context() attribute_values = [bimpy.Float(0) for i in indices] W = [torch.tensor(np.load("principal_directions/direction_%d.npy" % i), dtype=torch.float32) for i in indices] rnd = np.random.RandomState(5) def loadNext(): img = np.asarray(Image.open(path + '/' + paths[0])) current_file.value = paths[0] paths.pop(0) if len(paths) == 0: paths.extend(paths_backup) if img.shape[2] == 4: img = img[:, :, :3] im = img.transpose((2, 0, 1)) x = torch.tensor(np.asarray(im, dtype=np.float32), device='cpu', requires_grad=True).cuda() / 127.5 - 1. if x.shape[0] == 4: x = x[:3] needed_resolution = model.decoder.layer_to_resolution[-1] while x.shape[2] > needed_resolution: x = F.avg_pool2d(x, 2, 2) if x.shape[2] != needed_resolution: x = F.adaptive_avg_pool2d(x, (needed_resolution, needed_resolution)) img_src = ((x * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255).cpu().type(torch.uint8).transpose(0, 2).transpose(0, 1).numpy() latents_original = encode(x[None, ...].cuda()) latents = latents_original[0, 0].clone() latents -= model.dlatent_avg.buff.data[0] for v, w in zip(attribute_values, W): v.value = (latents * w).sum() for v, w in zip(attribute_values, W): latents = latents - v.value * w return latents, latents_original, img_src def loadRandom(): latents = rnd.randn(1, cfg.MODEL.LATENT_SPACE_SIZE) lat = torch.tensor(latents).float().cuda() dlat = mapping_fl(lat) layer_idx = torch.arange(2 * layer_count)[np.newaxis, :, np.newaxis] ones = torch.ones(layer_idx.shape, dtype=torch.float32) coefs = torch.where(layer_idx < model.truncation_cutoff, ones, ones) dlat = torch.lerp(model.dlatent_avg.buff.data, dlat, coefs) x = decode(dlat)[0] img_src = ((x * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255).cpu().type(torch.uint8).transpose(0, 2).transpose(0, 1).numpy() latents_original = dlat latents = latents_original[0, 0].clone() latents -= model.dlatent_avg.buff.data[0] for v, w in zip(attribute_values, W): v.value = (latents * w).sum() for v, w in zip(attribute_values, W): latents = latents - v.value * w return latents, latents_original, img_src latents, latents_original, img_src = loadNext() ctx.init(1800, 1600, "Styles") def update_image(w, latents_original): with torch.no_grad(): w = w + model.dlatent_avg.buff.data[0] w = w[None, None, ...].repeat(1, model.mapping_fl.num_layers, 1) layer_idx = torch.arange(model.mapping_fl.num_layers)[np.newaxis, :, np.newaxis] cur_layers = (7 + 1) * 2 mixing_cutoff = cur_layers styles = torch.where(layer_idx < mixing_cutoff, w, latents_original) x_rec = decode(styles) resultsample = ((x_rec * 0.5 + 0.5) * 255).type(torch.long).clamp(0, 255) resultsample = resultsample.cpu()[0, :, :, :] return resultsample.type(torch.uint8).transpose(0, 2).transpose(0, 1) im_size = 2 ** (cfg.MODEL.LAYER_COUNT + 1) im = update_image(latents, latents_original) print(im.shape) im = bimpy.Image(im) display_original = True seed = 0 while not ctx.should_close(): with ctx: new_latents = latents + sum([v.value * w for v, w in zip(attribute_values, W)]) if display_original: im = bimpy.Image(img_src) else: im = bimpy.Image(update_image(new_latents, latents_original)) bimpy.begin("Principal directions") bimpy.columns(2) bimpy.set_column_width(0, im_size + 20) bimpy.image(im) bimpy.next_column() for v, label in zip(attribute_values, labels): bimpy.slider_float(label, v, -40.0, 40.0) bimpy.checkbox("Randomize noise", randomize) if randomize.value: seed += 1 torch.manual_seed(seed) if bimpy.button('Next'): latents, latents_original, img_src = loadNext() display_original = True if bimpy.button('Display Reconstruction'): display_original = False if bimpy.button('Generate random'): latents, latents_original, img_src = loadRandom() display_original = False if bimpy.input_text("Current file", current_file, 64) and os.path.exists(path + '/' + current_file.value): paths.insert(0, current_file.value) latents, latents_original, img_src = loadNext() bimpy.end()