예제 #1
0
    def __init__(self, args: Namespace, atom_fdim: int, bond_fdim: int):
        """Initializes the MPNEncoder.

        :param args: Arguments.
        :param atom_fdim: Atom features dimension.
        :param bond_fdim: Bond features dimension.
        """
        super(MPNEncoder, self).__init__()
        self.atom_fdim = atom_fdim  # 133
        self.bond_fdim = bond_fdim  # 147
        self.hidden_size = args.hidden_size
        self.bias = args.bias
        self.depth = args.depth
        self.dropout = args.dropout
        self.layers_per_message = 1
        self.undirected = args.undirected
        self.atom_messages = args.atom_messages  # Use messages on atoms instead of messages on bonds, default=False
        self.features_only = args.features_only
        self.use_input_features = args.use_input_features
        self.epistemic = args.epistemic
        self.mc_dropout = self.epistemic == 'mc_dropout'
        self.args = args
        self.features_generator = args.features_generator


        if self.features_only or self.features_generator:
            return

        # Dropout
        self.dropout_layer = nn.Dropout(p=self.dropout)

        # Activation
        self.act_func = get_activation_function(args.activation)

        # Cached zeros
        self.cached_zero_vector = nn.Parameter(torch.zeros(self.hidden_size), requires_grad=False)

        # Concrete Dropout for Bayesian NN
        wd, dd = get_cc_dropout_hyper(args.train_data_size, args.regularization_scale)

        # Input
        input_dim = self.atom_fdim if self.atom_messages else self.bond_fdim  # 默認input dim -> bond_fdim 147

        if self.mc_dropout:
            self.W_i = ConcreteDropout(layer=nn.Linear(input_dim, self.hidden_size, bias=self.bias), reg_acc=args.reg_acc, weight_regularizer=wd, dropout_regularizer=dd)
        else:
            self.W_i = nn.Linear(input_dim, self.hidden_size, bias=self.bias)  # in 147 out 1000 self.bias-> False (no bias)

        if self.atom_messages:
            w_h_input_size = self.hidden_size + self.bond_fdim
        else:
            w_h_input_size = self.hidden_size   # 1000

        # Shared weight matrix across depths (default)
        if self.mc_dropout:
            self.W_h = ConcreteDropout(layer=nn.Linear(w_h_input_size, self.hidden_size, bias=self.bias), reg_acc=args.reg_acc, weight_regularizer=wd, dropout_regularizer=dd, depth=self.depth - 1)
            self.W_o = ConcreteDropout(layer=nn.Linear(self.atom_fdim + self.hidden_size, self.hidden_size), reg_acc=args.reg_acc, weight_regularizer=wd, dropout_regularizer=dd)
        else:
            self.W_h = nn.Linear(w_h_input_size, self.hidden_size, bias=self.bias)  # in 1000 out 1000 (no bias)
            self.W_o = nn.Linear(self.atom_fdim + self.hidden_size, self.hidden_size)  # in 1000+133 out 1000 (with bias 1000)
예제 #2
0
    def create_ffn(self, args: Namespace):
        """
        Creates the feed-forward network for the model.

        :param args: Arguments.
        """
        self.multiclass = args.dataset_type == 'multiclass'
        if self.multiclass:
            self.num_classes = args.multiclass_num_classes
        if args.features_only:
            first_linear_dim = args.features_size
        else:
            first_linear_dim = args.hidden_size
            if args.use_input_features:
                first_linear_dim += args.features_dim

        dropout = nn.Dropout(args.dropout)
        activation = get_activation_function(args.activation)

        wd, dd = get_cc_dropout_hyper(args.train_data_size, args.regularization_scale)

        # Create FFN layers
        if args.ffn_num_layers == 1:
            ffn = [
                dropout,
            ]
            last_linear_dim = first_linear_dim
        else:
            ffn = [
                dropout,
                ConcreteDropout(layer=nn.Linear(first_linear_dim, args.ffn_hidden_size),
                                reg_acc=args.reg_acc, weight_regularizer=wd,
                                dropout_regularizer=dd) if self.mc_dropout else
                nn.Linear(first_linear_dim, args.ffn_hidden_size)

            ]
            for _ in range(args.ffn_num_layers - 2):
                ffn.extend([
                    activation,
                    dropout,
                    ConcreteDropout(layer=nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size),
                                    reg_acc=args.reg_acc, weight_regularizer=wd,
                                    dropout_regularizer=dd) if self.mc_dropout else
                    nn.Linear(args.ffn_hidden_size, args.ffn_hidden_size)
                ])
            ffn.extend([
                activation,
                dropout,

            ])
            last_linear_dim = args.ffn_hidden_size

        # Create FFN model
        self._ffn = nn.Sequential(*ffn)

        if self.aleatoric:
            self.output_layer = nn.Linear(last_linear_dim, args.output_size)
            self.logvar_layer = nn.Linear(last_linear_dim, args.output_size)
        else:
            self.output_layer = nn.Linear(last_linear_dim, args.output_size)