class ChessModel: def __init__(self, config: Config): self.config = config self.model = None # type: Model self.digest = None self.api = None def get_pipes(self, num=1): if self.api is None: self.api = ChessModelAPI(self.config, self) self.api.start() return [self.api.get_pipe() for _ in range(num)] def build(self): mc = self.config.model # in_x = x = Input((18, 8, 8)) in_x = x = Input((14, 10, 9)) # change to CC # (batch, channels, height, width) x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_first_filter_size, padding="same", data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg), name="input_conv-" + str(mc.cnn_first_filter_size) + "-" + str(mc.cnn_filter_num))(x) x = BatchNormalization(axis=1, name="input_batchnorm")(x) x = Activation("relu", name="input_relu")(x) for i in range(mc.res_layer_num): x = self._build_residual_block(x, i + 1) res_out = x # for policy output x = Conv2D(filters=2, kernel_size=1, data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg), name="policy_conv-1-2")(res_out) x = BatchNormalization(axis=1, name="policy_batchnorm")(x) x = Activation("relu", name="policy_relu")(x) x = Flatten(name="policy_flatten")(x) # no output for 'pass' policy_out = Dense(self.config.n_labels, kernel_regularizer=l2(mc.l2_reg), activation="softmax", name="policy_out")(x) # for value output x = Conv2D(filters=4, kernel_size=1, data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg), name="value_conv-1-4")(res_out) x = BatchNormalization(axis=1, name="value_batchnorm")(x) x = Activation("relu", name="value_relu")(x) x = Flatten(name="value_flatten")(x) x = Dense(mc.value_fc_size, kernel_regularizer=l2(mc.l2_reg), activation="relu", name="value_dense")(x) value_out = Dense(1, kernel_regularizer=l2(mc.l2_reg), activation="tanh", name="value_out")(x) self.model = Model(in_x, [policy_out, value_out], name="chess_model") def _build_residual_block(self, x, index): mc = self.config.model in_x = x res_name = "res" + str(index) x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same", data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg), name=res_name + "_conv1-" + str(mc.cnn_filter_size) + "-" + str(mc.cnn_filter_num))(x) x = BatchNormalization(axis=1, name=res_name + "_batchnorm1")(x) x = Activation("relu", name=res_name + "_relu1")(x) x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same", data_format="channels_first", use_bias=False, kernel_regularizer=l2(mc.l2_reg), name=res_name + "_conv2-" + str(mc.cnn_filter_size) + "-" + str(mc.cnn_filter_num))(x) x = BatchNormalization(axis=1, name="res" + str(index) + "_batchnorm2")(x) x = Add(name=res_name + "_add")([in_x, x]) x = Activation("relu", name=res_name + "_relu2")(x) return x @staticmethod def fetch_digest(weight_path): if os.path.exists(weight_path): m = hashlib.sha256() with open(weight_path, "rb") as f: m.update(f.read()) return m.hexdigest() def load(self, config_path, weight_path): mc = self.config.model resources = self.config.resource if mc.distributed and config_path == resources.model_best_config_path: try: logger.debug("loading model from server") ftp_connection = ftplib.FTP( resources.model_best_distributed_ftp_server, resources.model_best_distributed_ftp_user, resources.model_best_distributed_ftp_password) ftp_connection.cwd( resources.model_best_distributed_ftp_remote_path) ftp_connection.retrbinary("RETR model_best_config.json", open(config_path, 'wb').write) ftp_connection.retrbinary("RETR model_best_weight.h5", open(weight_path, 'wb').write) ftp_connection.quit() except: pass if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug("loading model from %s" % (config_path)) with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.model._make_predict_function() self.digest = self.fetch_digest(weight_path) logger.debug("loaded model digest = %s" % (self.digest)) return True else: logger.debug("model files does not exist at %s and %s" % (config_path, weight_path)) return False def save(self, config_path, weight_path): logger.debug("saving model to %s" % (config_path)) print('debug-3') with open(config_path, "wt") as f: print('debug-2') json.dump(self.model.get_config(), f) print('debug-1') self.model.save_weights(weight_path) print('debug-0') self.digest = self.fetch_digest(weight_path) logger.debug("saved model digest %s" % (self.digest)) print('debug') mc = self.config.model resources = self.config.resource print('debug2') if mc.distributed and config_path == resources.model_best_config_path: try: print('debug3') logger.debug("saving model to server") ftp_connection = ftplib.FTP( resources.model_best_distributed_ftp_server, resources.model_best_distributed_ftp_user, resources.model_best_distributed_ftp_password) ftp_connection.cwd( resources.model_best_distributed_ftp_remote_path) fh = open(config_path, 'rb') ftp_connection.storbinary('STOR model_best_config.json', fh) fh.close() fh = open(weight_path, 'rb') ftp_connection.storbinary('STOR model_best_weight.h5', fh) fh.close() ftp_connection.quit() except: print('debug4') pass
class ChessModel: def __init__(self, config: Config): self.config = config self.model = None # type: Model self.graph = None self.digest = None self.api = None def get_pipes(self, num=1): if self.api is None: self.api = ChessModelAPI(self) self.api.start() return [self.api.get_pipe() for _ in range(num)] def build(self): mc = self.config.model in_x = x = Input((mc.input_stack_height, 8, 8)) # (batch, channels, height, width) x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same", data_format="channels_first", use_bias=False, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg), input_shape=(mc.input_stack_height, 8, 8))(x) x = BatchNormalization(axis=1)(x) x = Activation("relu")(x) for _ in range(mc.res_layer_num): x = self._build_residual_block(x) res_out = x # for policy output x = Conv2D(filters=2, kernel_size=1, data_format="channels_first", use_bias=False, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg))(res_out) x = BatchNormalization(axis=1)(x) x = Activation("relu")(x) x = Flatten()(x) # no output for 'pass' policy_out = Dense(self.config.n_labels, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg), activation="softmax", name="policy_out")(x) # for value output x = Conv2D(filters=1, kernel_size=1, data_format="channels_first", use_bias=False, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg))(res_out) x = BatchNormalization(axis=1)(x) x = Activation("relu")(x) x = Flatten()(x) x = Dense(mc.value_fc_size, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg), activation="relu")(x) value_out = Dense(1, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg), activation="tanh", name="value_out")(x) self.model = Model(in_x, [policy_out, value_out], name="chess_model") self.graph = get_default_graph() def _build_residual_block(self, x): mc = self.config.model in_x = x x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same", data_format="channels_first", use_bias=False, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg))(x) x = BatchNormalization(axis=1)(x) x = Activation("relu")(x) x = Conv2D(filters=mc.cnn_filter_num, kernel_size=mc.cnn_filter_size, padding="same", data_format="channels_first", use_bias=False, kernel_initializer='glorot_normal', bias_initializer='zeros', kernel_regularizer=l2(mc.l2_reg))(x) x = BatchNormalization(axis=1)(x) x = Add()([in_x, x]) x = Activation("relu")(x) return x @staticmethod def fetch_digest(weight_path): if os.path.exists(weight_path): m = hashlib.sha256() with open(weight_path, "rb") as f: m.update(f.read()) return m.hexdigest() def load(self, config_path, weight_path): if os.path.exists(config_path) and os.path.exists(weight_path): logger.debug(f"loading model from {config_path}") with open(config_path, "rt") as f: self.model = Model.from_config(json.load(f)) self.model.load_weights(weight_path) self.graph = get_default_graph() # self.model._make_predict_function() self.digest = self.fetch_digest(weight_path) logger.debug(f"loaded model digest = {self.digest}") return True else: logger.debug( f"model files do not exist at {config_path} and {weight_path}") return False def save(self, config_path, weight_path): logger.debug(f"save model to {config_path}") with open(config_path, "wt") as f: json.dump(self.model.get_config(), f) self.model.save_weights(weight_path) self.digest = self.fetch_digest(weight_path) logger.debug(f"saved model digest {self.digest}")