def test_kmeans(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig from chi_annotator.algo_factory.common import TrainingData cfg = AnnotatorConfig() pos_msg1 = Message(u"你好,我是一个demo!!!!") pos_msg2 = Message(u"你好,你好,你好") neg_msg1 = Message(u"如果发现有文件漏提或注释有误") neg_msg2 = Message(u"增加一个需要上传的文件") train_data = TrainingData([neg_msg1, neg_msg2, pos_msg1, pos_msg2]) cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) svm_classifer = cb.create_component("cluster_sklearn", cfg) char_tokenize.train(train_data, cfg) sent_embedding.train(train_data, cfg) svm_classifer.train(train_data, cfg) # test test_msg = Message(u"增加一个需要上传的文件") char_tokenize.process(test_msg, **{}) sent_embedding.process(test_msg, **{}) svm_classifer.process(test_msg, **{}) assert test_msg.get("cluster_center").get("center") is not None
def test_kmeans(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig from chi_annotator.algo_factory.common import TrainingData task_config = dict(config.CLASSIFY_TASK_CONFIG) dir_name = os.path.dirname(os.path.abspath(__file__)) task_config[ "embedding_path"] = dir_name + "/../data/test_embedding/vec.txt" task_config["embedding_type"] = "w2v" cfg = AnnotatorConfig(task_config) pos_msg1 = Message(u"你好,我是一个demo!!!!") pos_msg2 = Message(u"你好,你好,你好") neg_msg1 = Message(u"如果发现有文件漏提或注释有误") neg_msg2 = Message(u"增加一个需要上传的文件") train_data = TrainingData([neg_msg1, neg_msg2, pos_msg1, pos_msg2]) cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) svm_classifer = cb.create_component("cluster_sklearn", cfg) char_tokenize.train(train_data, cfg) sent_embedding.train(train_data, cfg) svm_classifer.train(train_data, cfg) # test test_msg = Message(u"增加一个需要上传的文件") char_tokenize.process(test_msg, **{}) sent_embedding.process(test_msg, **{}) svm_classifer.process(test_msg, **{}) assert test_msg.get("cluster_center").get("center") is not None
def test_randomforest_classify(self): task_config = dict(config.CLASSIFY_TASK_CONFIG) dir_name = os.path.dirname(os.path.abspath(__file__)) task_config[ "embedding_path"] = dir_name + "/../data/test_embedding/vec.txt" task_config["embedding_type"] = "w2v" cfg = AnnotatorConfig(task_config) train_data = TrainingData( [self.neg_msg1, self.neg_msg2, self.pos_msg1, self.pos_msg2]) cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) RandomForest_Classifier = cb.create_component( "RandomForest_Classifier", cfg) char_tokenize.train(train_data, cfg) sent_embedding.train(train_data, cfg) RandomForest_Classifier.train(train_data, cfg) # test test_msg = Message(u"增加一个需要上传的文件") char_tokenize.process(test_msg, **{}) sent_embedding.process(test_msg, **{}) RandomForest_Classifier.process(test_msg, **{}) assert test_msg.get("classifylabel").get("name") == "bad"
def test_kmeans(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig from chi_annotator.algo_factory.common import TrainingData task_config = dict(config.CLASSIFY_TASK_CONFIG) dir_name = os.path.dirname(os.path.abspath(__file__)) task_config["embedding_path"] = dir_name + "/../data/test_embedding/vec.txt" task_config["embedding_type"] = "w2v" cfg = AnnotatorConfig(task_config) pos_msg1 = Message(u"你好,我是一个demo!!!!") pos_msg2 = Message(u"你好,你好,你好") neg_msg1 = Message(u"如果发现有文件漏提或注释有误") neg_msg2 = Message(u"增加一个需要上传的文件") train_data = TrainingData([neg_msg1, neg_msg2, pos_msg1, pos_msg2]) cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) svm_classifer = cb.create_component("cluster_sklearn", cfg) char_tokenize.train(train_data, cfg) sent_embedding.train(train_data, cfg) svm_classifer.train(train_data, cfg) # test test_msg = Message(u"增加一个需要上传的文件") char_tokenize.process(test_msg, **{}) sent_embedding.process(test_msg, **{}) svm_classifer.process(test_msg, **{}) assert test_msg.get("cluster_center").get("center") is not None
def ignor_test_senten_embedding_extractor(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig cfg = AnnotatorConfig() msg = Message("你好,我是一个demo!!!!") cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) char_tokenize.process(msg) sent_embedding.process(msg, **{}) assert msg.get("sentence_embedding").sum() + 7.30032945834 < 1e-6
def ignor_test_embedding(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig from chi_annotator.algo_factory.common import TrainingData from gensim.models.word2vec import LineSentence text_dir = create_tmp_test_textfile("spam_email_text_1000") # 将数据放入TrainingData with open(text_dir, 'r') as f: res = [] for line in f.readlines(): line.strip('\n') line = Message(re.sub('\s', '', line)) res.append(line) res = TrainingData(res) cfg = AnnotatorConfig( filename="tests/data/test_config/test_config_embedding.json") cb = ComponentBuilder() # char_tokenize, embedding的训练暂时不用用到 char_tokenize = cb.create_component("char_tokenizer", cfg) char_tokenize.train(res, cfg) # 加载embedding, 训练模型, 传入数据为LinSentence(data_path) embedding = cb.create_component("embedding", cfg) embedding.train(LineSentence(text_dir), cfg) embedding.persist(cfg.wv_model_path) # 加载sent_embedding, 从embedding训练完是model中, 获得sentence_vec sent_embedding = cb.create_component("embedding_extractor", cfg) msg = Message("你好,我是一个demo!!!!") char_tokenize.process(msg) sent_embedding.sentence_process(msg, **{}) assert msg.get("sentence_embedding").sum() != 0 # 加载base model, 加入新的corpus, 在base_model的基础上进行增量学习 embedding = embedding.load(model_metadata=cfg) embedding.train(LineSentence(text_dir), cfg) embedding.persist(cfg.wv_model_path) # 增量学习后生成的新model, 进行EmbeddingExtractor测验 sent_embedding = cb.create_component("embedding_extractor", cfg) msg = Message("你好,我是一个demo!!!!") char_tokenize.process(msg) sent_embedding.sentence_process(msg, **{}) assert msg.get("sentence_embedding").sum() != 0 rm_tmp_file("word2vec.model") rm_tmp_file("word2vec.model.vector") rm_tmp_file("spam_email_text_1000")
def ignor_test_embedding(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig from chi_annotator.algo_factory.common import TrainingData from gensim.models.word2vec import LineSentence text_dir = create_tmp_test_textfile("spam_email_text_1000") # 将数据放入TrainingData with open(text_dir, 'r') as f: res = [] for line in f.readlines(): line.strip('\n') line = Message(re.sub('\s', '', line)) res.append(line) res = TrainingData(res) cfg = AnnotatorConfig(filename="tests/data/test_config/test_config_embedding.json") cb = ComponentBuilder() # char_tokenize, embedding的训练暂时不用用到 char_tokenize = cb.create_component("char_tokenizer", cfg) char_tokenize.train(res, cfg) # 加载embedding, 训练模型, 传入数据为LinSentence(data_path) embedding = cb.create_component("embedding", cfg) embedding.train(LineSentence(text_dir), cfg) embedding.persist(cfg.wv_model_path) # 加载sent_embedding, 从embedding训练完是model中, 获得sentence_vec sent_embedding = cb.create_component("embedding_extractor", cfg) msg = Message("你好,我是一个demo!!!!") char_tokenize.process(msg) sent_embedding.sentence_process(msg, **{}) assert msg.get("sentence_embedding").sum() != 0 # 加载base model, 加入新的corpus, 在base_model的基础上进行增量学习 embedding = embedding.load(model_metadata=cfg) embedding.train(LineSentence(text_dir), cfg) embedding.persist(cfg.wv_model_path) # 增量学习后生成的新model, 进行EmbeddingExtractor测验 sent_embedding = cb.create_component("embedding_extractor", cfg) msg = Message("你好,我是一个demo!!!!") char_tokenize.process(msg) sent_embedding.sentence_process(msg, **{}) assert msg.get("sentence_embedding").sum() != 0 rm_tmp_file("word2vec.model") rm_tmp_file("word2vec.model.vector") rm_tmp_file("spam_email_text_1000")
def test_sgd_classify(self): cfg = AnnotatorConfig() train_data = TrainingData( [self.neg_msg1, self.neg_msg2, self.pos_msg1, self.pos_msg2]) cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) SGD_Classifier = cb.create_component("SGD_Classifier", cfg) char_tokenize.train(train_data, cfg) sent_embedding.train(train_data, cfg) SGD_Classifier.train(train_data, cfg) # test test_msg = Message(u"增加一个需要上传的文件") char_tokenize.process(test_msg, **{}) sent_embedding.process(test_msg, **{}) SGD_Classifier.process(test_msg, **{}) assert test_msg.get("classifylabel").get("name") == "bad"
def test_tokenizer_main(): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.config import AnnotatorConfig msg = Message("你好,我是一个demo!!!!") cb = ComponentBuilder() config = AnnotatorConfig() ct = cb.create_component("char_tokenizer", config) if ct is not None: ct.process(msg, **{}) print(msg.get("tokens"))
def test_char_tokenizer(self): from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig msg = Message(u"你好,我是一个demo!!!!") cb = ComponentBuilder() cfg = AnnotatorConfig(config.CLASSIFY_TASK_CONFIG) ct = cb.create_component("char_tokenizer", cfg) assert ct is not None ct.process(msg, **{}) assert len(msg.get("tokens")) > 0
def test_randomforest_classify(self): task_config = dict(config.CLASSIFY_TASK_CONFIG) dir_name = os.path.dirname(os.path.abspath(__file__)) task_config["embedding_path"] = dir_name + "/../data/test_embedding/vec.txt" task_config["embedding_type"] = "w2v" cfg = AnnotatorConfig(task_config) train_data = TrainingData([self.neg_msg1, self.neg_msg2, self.pos_msg1, self.pos_msg2]) cb = ComponentBuilder() char_tokenize = cb.create_component("char_tokenizer", cfg) sent_embedding = cb.create_component("sentence_embedding_extractor", cfg) RandomForest_Classifier = cb.create_component("RandomForest_Classifier", cfg) char_tokenize.train(train_data, cfg) sent_embedding.train(train_data, cfg) RandomForest_Classifier.train(train_data, cfg) # test test_msg = Message(u"增加一个需要上传的文件") char_tokenize.process(test_msg, **{}) sent_embedding.process(test_msg, **{}) RandomForest_Classifier.process(test_msg, **{}) assert test_msg.get("classifylabel").get("name") == "bad"
def test_words_jieba_tokenizer(self): """ test word tokenizer using jieba :return: """ from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig msg = Message(u"你好,我是一个demo!!!!") cb = ComponentBuilder() config = AnnotatorConfig() ct = cb.create_component("tokenizer_jieba", config) assert ct is not None ct.process(msg, **{}) assert len(msg.get("tokens")) > 0
def ignor_test_words_jieba_tokenizer(self): """ #TODO: jieba will add later test word tokenizer using jieba :return: """ from chi_annotator.algo_factory.components import ComponentBuilder from chi_annotator.algo_factory.common import Message from chi_annotator.task_center.config import AnnotatorConfig msg = Message(u"你好,我是一个demo!!!!") cb = ComponentBuilder() cfg = AnnotatorConfig(config.CLASSIFY_TASK_CONFIG) ct = cb.create_component("tokenizer_jieba", cfg) assert ct is not None ct.process(msg, **{}) assert len(msg.get("tokens")) > 0