예제 #1
0
    def test_nested_concatenate(self):
        aa = ch.arange(3)
        bb = ch.arange(4)
        cc = ch.arange(5)

        result = ch.concatenate((ch.concatenate((aa, bb)), cc))
        self.assertTrue(result.m0 is aa)
        self.assertTrue(result.m1 is bb)
        self.assertTrue(result.m2 is cc)

        self.assertTrue(result.dr_wrt(aa).nnz > 0)
        self.assertTrue(result.dr_wrt(bb).nnz > 0)
        self.assertTrue(result.dr_wrt(cc).nnz > 0)
예제 #2
0
def setup_objective(obj,
                    free_variables,
                    on_step=None,
                    disp=True,
                    make_dense=False):
    '''
    obj here can be a list of ch objects or a dict of label: ch objects. Either way, the ch
    objects will be merged into one objective using a ChInputsStacked. The labels are just used
    for printing out values per objective with each iteration. If make_dense is True, the
    resulting object with return a desne Jacobian
    '''
    # Validate free variables
    num_unique_ids = len(
        np.unique(np.array([id(freevar) for freevar in free_variables])))
    if num_unique_ids != len(free_variables):
        raise Exception(
            'The "free_variables" param contains duplicate variables.')
    # Extract labels
    labels = {}
    if isinstance(obj, list) or isinstance(obj, tuple):
        obj = ch.concatenate([f.ravel() for f in obj])
    elif isinstance(obj, dict):
        labels = obj
        obj = ch.concatenate([f.ravel() for f in obj.values()])
    # build objective
    x = np.concatenate([freevar.r.ravel() for freevar in free_variables])
    obj = ChInputsStacked(obj=obj,
                          free_variables=free_variables,
                          x=x,
                          make_dense=make_dense)

    # build callback
    def callback():
        if on_step is not None:
            on_step(obj)
        if disp:
            report_line = ['%.2e' % (np.sum(obj.r**2), )]
            for label, objective in sorted(labels.items(), key=lambda x: x[0]):
                report_line.append('%s: %.2e' %
                                   (label, np.sum(objective.r**2)))
            report_line = " | ".join(report_line) + '\n'
            sys.stderr.write(report_line)

    return obj, callback
예제 #3
0
파일: linalg.py 프로젝트: yinger650/chumpy
def slogdet(*args):
    n = len(args)
    if n == 1:
        r2 = LogAbsDet(x=args[0])
        r1 = SignLogAbsDet(r2)
        return r1, r2
    else:
        r2 = [LogAbsDet(x=arg) for arg in args]
        r1 = [SignLogAbsDet(r) for r in r2]
        r2 = ch.concatenate(r2)
        return r1, r2
예제 #4
0
def _minimize_dogleg(obj,
                     free_variables,
                     on_step=None,
                     maxiter=200,
                     max_fevals=np.inf,
                     sparse_solver='spsolve',
                     disp=False,
                     show_residuals=None,
                     e_1=1e-18,
                     e_2=1e-18,
                     e_3=0.,
                     delta_0=None):
    """"Nonlinear optimization using Powell's dogleg method.

    See Lourakis et al, 2005, ICCV '05, "Is Levenberg-Marquardt
    the Most Efficient Optimization for Implementing Bundle
    Adjustment?":
    http://www.ics.forth.gr/cvrl/publications/conferences/0201-P0401-lourakis-levenberg.pdf
    """

    import warnings
    if show_residuals is not None:
        import warnings
        warnings.warn(
            'minimize_dogleg: show_residuals parm is deprecaed, pass a dict instead.'
        )

    labels = {}
    if isinstance(obj, list) or isinstance(obj, tuple):
        obj = ch.concatenate([f.ravel() for f in obj])
    elif isinstance(obj, dict):
        labels = obj
        obj = ch.concatenate([f.ravel() for f in list(obj.values())])

    niters = maxiter
    verbose = disp
    num_unique_ids = len(
        np.unique(np.array([id(freevar) for freevar in free_variables])))
    if num_unique_ids != len(free_variables):
        raise Exception(
            'The "free_variables" param contains duplicate variables.')

    obj = ChInputsStacked(
        obj=obj,
        free_variables=free_variables,
        x=np.concatenate([freevar.r.ravel() for freevar in free_variables]))

    def call_cb():
        if on_step is not None:
            on_step(obj)

        report_line = ""
        if len(labels) > 0:
            report_line += '%.2e | ' % (np.sum(obj.r**2), )
        for label in sorted(labels.keys()):
            objective = labels[label]
            report_line += '%s: %.2e | ' % (label, np.sum(objective.r**2))
        if len(labels) > 0:
            report_line += '\n'
        sys.stderr.write(report_line)

    call_cb()

    # pif = print-if-verbose.
    # can't use "print" because it's a statement, not a fn
    pif = lambda x: print(x) if verbose else 0

    if isinstance(sparse_solver, collections.Callable):
        solve = sparse_solver
    elif isinstance(sparse_solver, str) and sparse_solver in list(
            _solver_fns.keys()):
        solve = _solver_fns[sparse_solver]
    else:
        raise Exception(
            'sparse_solver argument must be either a string in the set (%s) or have the api of scipy.sparse.linalg.spsolve.'
            % ''.join(list(_solver_fns.keys()), ' '))

    # optimization parms
    k_max = niters
    fevals = 0

    k = 0
    delta = delta_0
    p = col(obj.x.r)

    fevals += 1

    tm = time.time()
    pif('computing Jacobian...')
    J = obj.J

    if sp.issparse(J):
        assert (J.nnz > 0)
    pif('Jacobian (%dx%d) computed in %.2fs' %
        (J.shape[0], J.shape[1], time.time() - tm))

    if J.shape[1] != p.size:
        import pdb
        pdb.set_trace()
    assert (J.shape[1] == p.size)

    tm = time.time()
    pif('updating A and g...')
    A = J.T.dot(J)
    r = col(obj.r.copy())

    g = col(J.T.dot(-r))
    pif('A and g updated in %.2fs' % (time.time() - tm))

    stop = norm(g, np.inf) < e_1
    while (not stop) and (k < k_max) and (fevals < max_fevals):
        k += 1
        pif('beginning iteration %d' % (k, ))
        d_sd = col((sqnorm(g)) / (sqnorm(J.dot(g))) * g)
        GNcomputed = False

        while True:
            # if the Cauchy point is outside the trust region,
            # take that direction but only to the edge of the trust region
            if delta is not None and norm(d_sd) >= delta:
                pif('PROGRESS: Using stunted cauchy')
                d_dl = np.array(col(delta / norm(d_sd) * d_sd))
            else:
                if not GNcomputed:
                    tm = time.time()
                    if scipy.sparse.issparse(A):
                        A.eliminate_zeros()
                        pif('sparse solve...sparsity infill is %.3f%% (hessian %dx%d), J infill %.3f%%'
                            % (100. * A.nnz / (A.shape[0] * A.shape[1]),
                               A.shape[0], A.shape[1], 100. * J.nnz /
                               (J.shape[0] * J.shape[1])))

                        if g.size > 1:
                            d_gn = col(solve(A, g))
                            if np.any(np.isnan(d_gn)) or np.any(
                                    np.isinf(d_gn)):
                                from scipy.sparse.linalg import lsqr
                                d_gn = col(lsqr(A, g)[0])
                        else:
                            d_gn = np.atleast_1d(g.ravel()[0] / A[0, 0])
                        pif('sparse solve...done in %.2fs' %
                            (time.time() - tm))
                    else:
                        pif('dense solve...')
                        try:
                            d_gn = col(np.linalg.solve(A, g))
                        except Exception:
                            d_gn = col(np.linalg.lstsq(A, g)[0])
                        pif('dense solve...done in %.2fs' % (time.time() - tm))
                    GNcomputed = True

                # if the gauss-newton solution is within the trust region, use it
                if delta is None or norm(d_gn) <= delta:
                    pif('PROGRESS: Using gauss-newton solution')
                    d_dl = np.array(d_gn)
                    if delta is None:
                        delta = norm(d_gn)

                else:  # between cauchy step and gauss-newton step
                    pif('PROGRESS: between cauchy and gauss-newton')

                    # compute beta multiplier
                    delta_sq = delta**2
                    pnow = ((d_gn - d_sd).T.dot(d_gn - d_sd) * delta_sq +
                            d_gn.T.dot(d_sd)**2 - sqnorm(d_gn) *
                            (sqnorm(d_sd)))
                    B = delta_sq - sqnorm(d_sd)
                    B /= ((d_gn - d_sd).T.dot(d_sd) + math.sqrt(pnow))

                    # apply step
                    d_dl = np.array(d_sd + float(B) * (d_gn - d_sd))

                    #assert(math.fabs(norm(d_dl) - delta) < 1e-12)
            if norm(d_dl) <= e_2 * norm(p):
                pif('stopping because of small step size (norm_dl < %.2e)' %
                    (e_2 * norm(p)))
                stop = True
            else:
                p_new = p + d_dl

                tm_residuals = time.time()
                obj.x = p_new
                fevals += 1

                r_trial = obj.r.copy()
                tm_residuals = time.time() - tm

                # rho is the ratio of...
                # (improvement in SSE) / (predicted improvement in SSE)

                # slower
                #rho = norm(e_p)**2 - norm(e_p_trial)**2
                #rho = rho / (L(d_dl*0, e_p, J) - L(d_dl, e_p, J))

                # faster
                sqnorm_ep = sqnorm(r)
                rho = sqnorm_ep - norm(r_trial)**2

                with warnings.catch_warnings():
                    warnings.filterwarnings('ignore', category=RuntimeWarning)
                    if rho > 0:
                        rho /= predicted_improvement(d_dl, -r, J, sqnorm_ep, A,
                                                     g)

                improvement_occurred = rho > 0

                # if the objective function improved, update input parameter estimate.
                # Note that the obj.x already has the new parms,
                # and we should not set them again to the same (or we'll bust the cache)
                if improvement_occurred:
                    p = col(p_new)
                    call_cb()

                    if (sqnorm_ep - norm(r_trial)**2) / sqnorm_ep < e_3:
                        stop = True
                        pif('stopping because improvement < %.1e%%' %
                            (100 * e_3, ))

                else:  # Put the old parms back
                    obj.x = ch.Ch(p)
                    obj.on_changed(
                        'x')  # copies from flat vector to free variables

                # if the objective function improved and we're not done,
                # get ready for the next iteration
                if improvement_occurred and not stop:
                    tm_jac = time.time()
                    pif('computing Jacobian...')
                    J = obj.J.copy()
                    tm_jac = time.time() - tm_jac
                    pif('Jacobian (%dx%d) computed in %.2fs' %
                        (J.shape[0], J.shape[1], tm_jac))

                    pif('Residuals+Jac computed in %.2fs' %
                        (tm_jac + tm_residuals, ))

                    tm = time.time()
                    pif('updating A and g...')
                    A = J.T.dot(J)
                    r = col(r_trial)
                    g = col(J.T.dot(-r))
                    pif('A and g updated in %.2fs' % (time.time() - tm))

                    if norm(g, np.inf) < e_1:
                        stop = True
                        pif('stopping because norm(g, np.inf) < %.2e' % (e_1))

                # update our trust region
                delta = updateRadius(rho, delta, d_dl)

                if delta <= e_2 * norm(p):
                    stop = True
                    pif('stopping because trust region is too small')

            # the following "collect" is very expensive.
            # please contact matt if you find situations where it actually helps things.
            #import gc; gc.collect()
            if stop or improvement_occurred or (fevals >= max_fevals):
                break
        if k >= k_max:
            pif('stopping because max number of user-specified iterations (%d) has been met'
                % (k_max, ))
        elif fevals >= max_fevals:
            pif('stopping because max number of user-specified func evals (%d) has been met'
                % (max_fevals, ))

    return obj.free_variables
예제 #5
0
def minimize(fun,
             x0,
             method='dogleg',
             bounds=None,
             constraints=(),
             tol=None,
             callback=None,
             options=None):

    if method == 'dogleg':
        if options is None: options = {}
        return _minimize_dogleg(fun,
                                free_variables=x0,
                                on_step=callback,
                                **options)

    maxiter = None
    if options != None:
        maxiter = options['maxiter']

    if isinstance(fun, list) or isinstance(fun, tuple):
        fun = ch.concatenate([f.ravel() for f in fun])
    if isinstance(fun, dict):
        fun = ch.concatenate([f.ravel() for f in list(fun.values())])
    obj = fun
    free_variables = x0

    from chumpy.ch import SumOfSquares

    hessp = None
    hess = None
    if obj.size == 1:
        obj_scalar = obj
    else:
        obj_scalar = SumOfSquares(obj)

        def hessp(vs, p, obj, obj_scalar, free_variables):
            changevars(vs, obj, obj_scalar, free_variables)
            if not hasattr(hessp, 'vs'):
                hessp.vs = vs * 0 + 1e16
            if np.max(np.abs(vs - hessp.vs)) > 0:

                J = ns_jacfunc(vs, obj, obj_scalar, free_variables)
                hessp.J = J
                hessp.H = 2. * J.T.dot(J)
                hessp.vs = vs
            return np.array(hessp.H.dot(p)).ravel()
            #return 2*np.array(hessp.J.T.dot(hessp.J.dot(p))).ravel()

        if method.lower() != 'newton-cg':

            def hess(vs, obj, obj_scalar, free_variables):
                changevars(vs, obj, obj_scalar, free_variables)
                if not hasattr(hessp, 'vs'):
                    hessp.vs = vs * 0 + 1e16
                if np.max(np.abs(vs - hessp.vs)) > 0:
                    J = ns_jacfunc(vs, obj, obj_scalar, free_variables)
                    hessp.H = 2. * J.T.dot(J)
                return hessp.H

    def changevars(vs, obj, obj_scalar, free_variables):
        cur = 0
        changed = False
        for idx, freevar in enumerate(free_variables):
            sz = freevar.r.size
            newvals = vs[cur:cur + sz].copy().reshape(
                free_variables[idx].shape)
            if np.max(np.abs(newvals - free_variables[idx]).ravel()) > 0:
                free_variables[idx][:] = newvals
                changed = True

            cur += sz

        methods_without_callback = ('anneal', 'powell', 'cobyla', 'slsqp')
        if callback is not None and changed and method.lower(
        ) in methods_without_callback:
            callback(None)

        return changed

    def residuals(vs, obj, obj_scalar, free_variables):
        changevars(vs, obj, obj_scalar, free_variables)
        residuals = obj_scalar.r.ravel()[0]
        return residuals

    def scalar_jacfunc(vs, obj, obj_scalar, free_variables):
        if not hasattr(scalar_jacfunc, 'vs'):
            scalar_jacfunc.vs = vs * 0 + 1e16
        if np.max(np.abs(vs - scalar_jacfunc.vs)) == 0:
            return scalar_jacfunc.J

        changevars(vs, obj, obj_scalar, free_variables)

        if False:  # faster, at least on some problems
            result = np.concatenate([
                np.array(obj_scalar.lop(wrt, np.array([[1]]))).ravel()
                for wrt in free_variables
            ])
        else:
            jacs = [obj_scalar.dr_wrt(wrt) for wrt in free_variables]
            for idx, jac in enumerate(jacs):
                if sp.issparse(jac):
                    jacs[idx] = jacs[idx].toarray()
            result = np.concatenate([jac.ravel() for jac in jacs])

        scalar_jacfunc.J = result
        scalar_jacfunc.vs = vs
        return np.squeeze(np.asarray(result.ravel()))

    def ns_jacfunc(vs, obj, obj_scalar, free_variables):
        if not hasattr(ns_jacfunc, 'vs'):
            ns_jacfunc.vs = vs * 0 + 1e16
        if np.max(np.abs(vs - ns_jacfunc.vs)) == 0:
            return ns_jacfunc.J

        changevars(vs, obj, obj_scalar, free_variables)
        jacs = [obj.dr_wrt(wrt) for wrt in free_variables]
        result = hstack(jacs)

        ns_jacfunc.J = result
        ns_jacfunc.vs = vs
        return result

    if method == 'minimize':
        x1, fX, i = min_ras.minimize(np.concatenate(
            [free_variable.r.ravel() for free_variable in free_variables]),
                                     residuals,
                                     scalar_jacfunc,
                                     args=(obj, obj_scalar, free_variables),
                                     on_step=callback,
                                     maxnumfuneval=maxiter)
    elif method == 'SGDMom':
        return minimize_sgdmom(obj=fun,
                               free_variables=x0,
                               lr=options['lr'],
                               momentum=options['momentum'],
                               decay=options['decay'],
                               on_step=callback,
                               maxiters=maxiter)
    # elif method == 'probLineSearch':
    # x1 = probLineSearchMin(np.concatenate([free_variable.r.ravel() for free_variable in free_variables]), residuals, scalar_jacfunc, args=(obj, obj_scalar, free_variables), df_vars=options['df_vars'], on_step=callback, maxnumfuneval=maxiter)
    else:
        # ipdb.set_trace()
        x1 = scipy.optimize.minimize(method=method,
                                     fun=residuals,
                                     callback=callback,
                                     x0=np.concatenate([
                                         free_variable.r.ravel()
                                         for free_variable in free_variables
                                     ]),
                                     jac=scalar_jacfunc,
                                     hessp=hessp,
                                     hess=hess,
                                     args=(obj, obj_scalar, free_variables),
                                     bounds=bounds,
                                     constraints=constraints,
                                     tol=tol,
                                     options=options).x

    changevars(x1, obj, obj_scalar, free_variables)

    return free_variables
예제 #6
0
def scipyGradCheck(fun, x0):

    if isinstance(fun, list) or isinstance(fun, tuple):
        fun = ch.concatenate([f.ravel() for f in fun])
    if isinstance(fun, dict):
        fun = ch.concatenate([f.ravel() for f in list(fun.values())])

    obj = fun
    free_variables = x0

    from chumpy.ch import SumOfSquares

    hessp = None
    hess = None
    if obj.size == 1:
        obj_scalar = obj
    else:
        obj_scalar = SumOfSquares(obj)

        def hessp(vs, p, obj, obj_scalar, free_variables):
            changevars(vs, obj, obj_scalar, free_variables)
            if not hasattr(hessp, 'vs'):
                hessp.vs = vs * 0 + 1e16
            if np.max(np.abs(vs - hessp.vs)) > 0:

                J = ns_jacfunc(vs, obj, obj_scalar, free_variables)
                hessp.J = J
                hessp.H = 2. * J.T.dot(J)
                hessp.vs = vs
            return np.array(hessp.H.dot(p)).ravel()
            #return 2*np.array(hessp.J.T.dot(hessp.J.dot(p))).ravel()

        if method.lower() != 'newton-cg':

            def hess(vs, obj, obj_scalar, free_variables):
                changevars(vs, obj, obj_scalar, free_variables)
                if not hasattr(hessp, 'vs'):
                    hessp.vs = vs * 0 + 1e16
                if np.max(np.abs(vs - hessp.vs)) > 0:
                    J = ns_jacfunc(vs, obj, obj_scalar, free_variables)
                    hessp.H = 2. * J.T.dot(J)
                return hessp.H

    def changevars(vs, obj, obj_scalar, free_variables):
        cur = 0
        changed = False
        for idx, freevar in enumerate(free_variables):
            sz = freevar.r.size
            newvals = vs[cur:cur + sz].copy().reshape(
                free_variables[idx].shape)
            if np.max(np.abs(newvals - free_variables[idx]).ravel()) > 0:
                free_variables[idx][:] = newvals
                changed = True

            cur += sz

        return changed

    def residuals(vs, obj, obj_scalar, free_variables):
        changevars(vs, obj, obj_scalar, free_variables)
        residuals = obj_scalar.r.ravel()[0]
        return residuals

    def scalar_jacfunc(vs, obj, obj_scalar, free_variables):
        if not hasattr(scalar_jacfunc, 'vs'):
            scalar_jacfunc.vs = vs * 0 + 1e16
        if np.max(np.abs(vs - scalar_jacfunc.vs)) == 0:
            return scalar_jacfunc.J

        changevars(vs, obj, obj_scalar, free_variables)

        if False:  # faster, at least on some problems
            result = np.concatenate([
                np.array(obj_scalar.lop(wrt, np.array([[1]]))).ravel()
                for wrt in free_variables
            ])
        else:
            jacs = [obj_scalar.dr_wrt(wrt) for wrt in free_variables]
            for idx, jac in enumerate(jacs):
                if sp.issparse(jac):
                    jacs[idx] = jacs[idx].toarray()
            result = np.concatenate([jac.ravel() for jac in jacs])

        scalar_jacfunc.J = result
        scalar_jacfunc.vs = vs
        return np.squeeze(np.asarray(result.ravel()))

    def ns_jacfunc(vs, obj, obj_scalar, free_variables):
        if not hasattr(ns_jacfunc, 'vs'):
            ns_jacfunc.vs = vs * 0 + 1e16
        if np.max(np.abs(vs - ns_jacfunc.vs)) == 0:
            return ns_jacfunc.J

        changevars(vs, obj, obj_scalar, free_variables)
        jacs = [obj.dr_wrt(wrt) for wrt in free_variables]
        result = hstack(jacs)

        ns_jacfunc.J = result
        ns_jacfunc.vs = vs
        return result

    err = scipy.optimize.check_grad(
        residuals, scalar_jacfunc,
        np.concatenate(
            [free_variable.r.ravel() for free_variable in free_variables]),
        obj, obj_scalar, free_variables)
    print(
        "Grad check (Root Sum Sq. of Diff.) error of real and finite difference gradients: "
        + str(err))

    return err
예제 #7
0
def minimize_sgdmom(obj,
                    free_variables,
                    lr=0.01,
                    momentum=0.9,
                    decay=0.9,
                    tol=1e-5,
                    on_step=None,
                    maxiters=None):

    verbose = False

    labels = {}
    if isinstance(obj, list) or isinstance(obj, tuple):
        obj = ch.concatenate([f.ravel() for f in obj])
    elif isinstance(obj, dict):
        labels = obj
        obj = ch.concatenate([f.ravel() for f in list(obj.values())])

    num_unique_ids = len(
        np.unique(np.array([id(freevar) for freevar in free_variables])))
    if num_unique_ids != len(free_variables):
        raise Exception(
            'The "free_variables" param contains duplicate variables.')

    obj = ChInputsStacked(
        obj=obj,
        free_variables=free_variables,
        x=np.concatenate([freevar.r.ravel() for freevar in free_variables]))

    def call_cb():
        if on_step is not None:
            on_step(obj)

        report_line = ""
        if len(labels) > 0:
            report_line += '%.2e | ' % (np.sum(obj.r**2), )
        for label in sorted(labels.keys()):
            objective = labels[label]
            report_line += '%s: %.2e | ' % (label, np.sum(objective.r**2))
        if len(labels) > 0:
            report_line += '\n'
        sys.stderr.write(report_line)

    call_cb()

    # pif = print-if-verbose.
    # can't use "print" because it's a statement, not a fn
    pif = lambda x: print(x) if verbose else 0

    # optimization parms
    k_max = maxiters

    k = 0

    p = col(obj.x.r)

    tm = time.time()
    pif('computing Jacobian...')
    J = obj.J

    if sp.issparse(J):
        assert (J.nnz > 0)
    pif('Jacobian (%dx%d) computed in %.2fs' %
        (J.shape[0], J.shape[1], time.time() - tm))

    if J.shape[1] != p.size:
        import pdb
        pdb.set_trace()
    assert (J.shape[1] == p.size)

    tm = time.time()
    pif('updating A and g...')

    stop = False
    dp = np.array([[0]])

    bestParams = p
    bestEval = obj.r
    numWorse = 0

    while (not stop) and (k < k_max):
        k += 1

        pif('beginning iteration %d' % (k, ))
        arrJ = J
        if sp.issparse(J):
            arrJ = J.toarray()
        dp = col(lr * np.array(J)) + momentum * dp

        p_new = p - dp

        lr = lr * decay

        obj.x = p_new.ravel()

        if norm(dp) < tol:
            pif('stopping due to small update')
            stop = True

        J = obj.J.copy()

        if bestEval > obj.r:
            numWorse = 0
            bestEval = obj.r.copy()
            bestParams = p.copy()
        else:
            numWorse += 1
            if numWorse >= 10:
                print("Stopping due to increasing evaluation error.")
                stop = True
                obj.x = bestParams.ravel()
                obj.r

        p = col(obj.x.r)

        call_cb()

        if k >= k_max:
            pif('stopping because max number of user-specified iterations (%d) has been met'
                % (k_max, ))

    return obj.free_variables