예제 #1
0
def tower_loss(scope):
    """Calculate the total loss on a single tower running the CIFAR model.
  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs()
    # Build inference Graph.
    logits = cifar10.inference(images)
    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = cifar10.loss(logits, labels)
    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)
    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    loss_averages_op = loss_averages.apply(losses + [total_loss])
    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(loss_name + ' (raw)', l)
        tf.scalar_summary(loss_name, loss_averages.average(l))
    with tf.control_dependencies([loss_averages_op]):
        total_loss = tf.identity(total_loss)
    return total_loss
예제 #2
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.train.get_or_create_global_step()

        # Get images and labels for CIFAR-10.
        # Force input pipeline to CPU:0 to avoid operations sometimes ending up on
        # GPU and resulting in a slow down.
        with tf.device('/cpu:0'):
            images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)

        class _LoggerHook(tf.train.SessionRunHook):
            """Logs loss and runtime."""
            def begin(self):
                self._step = -1
                self._start_time = time.time()

            def before_run(self, run_context):
                self._step += 1
                return tf.train.SessionRunArgs(loss)  # Asks for loss value.

            def after_run(self, run_context, run_values):
                if self._step % FLAGS.log_frequency == 0:
                    current_time = time.time()
                    duration = current_time - self._start_time
                    self._start_time = current_time

                    loss_value = run_values.results
                    examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
                    sec_per_batch = float(duration / FLAGS.log_frequency)

                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str % (datetime.now(), self._step, loss_value,
                                        examples_per_sec, sec_per_batch))

        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_dir,
                hooks=[
                    tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
                    tf.train.NanTensorHook(loss),
                    _LoggerHook()
                ],
                config=tf.ConfigProto(log_device_placement=FLAGS.
                                      log_device_placement)) as mon_sess:
            while not mon_sess.should_stop():
                mon_sess.run(train_op)
예제 #3
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)
        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()
        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)
        # Calculate loss.
        loss = cifar10.loss(logits, labels)
        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)
        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())
        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()
        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()
        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)
        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                                graph_def=sess.graph_def)
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time
            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)
                format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                              'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))
            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)
            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
예제 #4
0
def tower_loss(scope, args):
    """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
    args: Command line arguments.

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs(args.data_dir, args.batch_size,
                                              args.use_fp16)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images, args.batch_size, args.use_fp16)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = cifar10.loss(logits, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
예제 #5
0
def train(args):
    """Train CIFAR-10 for a number of steps.

  Args:
    args: The command line arguments.
  """

    with tf.Graph().as_default():

        # Create the global step
        global_step = tf.contrib.framework.create_global_step()

        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs(args.data_dir,
                                                  args.batch_size,
                                                  args.use_fp16)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images, args.batch_size, args.use_fp16)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step, args.batch_size)

        scaffold = monitored_session.Scaffold()

        session_creator = monitored_session.ChiefSessionCreator(
            scaffold,
            checkpoint_dir=args.train_dir,
            config=tf.ConfigProto(
                log_device_placement=args.log_device_placement))

        hooks = [
            # Hook to save the model every N steps and at the end.
            basic_session_run_hooks.CheckpointSaverHook(
                args.train_dir,
                checkpoint_basename=CHECKPOINT_BASENAME,
                save_steps=args.checkpoint_interval_steps,
                scaffold=scaffold),

            # Hook to save a summary every N steps.
            basic_session_run_hooks.SummarySaverHook(
                save_steps=args.summary_interval_steps,
                output_dir=args.train_dir,
                scaffold=scaffold),

            # Hook to stop at step N.
            basic_session_run_hooks.StopAtStepHook(
                last_step=args.train_max_steps)
        ]

        # Start a new monitored session. This will automatically restart the
        # sessions if the parameter servers are preempted.
        with monitored_session.MonitoredSession(
                session_creator=session_creator, hooks=hooks) as sess:

            while not sess.should_stop():

                start_time = time.time()
                _, loss_value, global_step_value = sess.run(
                    [train_op, loss, global_step])
                duration = time.time() - start_time

                assert not np.isnan(
                    loss_value), 'Model diverged with loss = NaN'

                if global_step_value % 10 == 0:
                    num_examples_per_step = args.batch_size
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)

                    logging.info(
                        ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                         'sec/batch)'), datetime.now(), global_step_value,
                        loss_value, examples_per_sec, sec_per_batch)
예제 #6
0
def train():
  """Train CIFAR-10 for a number of steps."""
  with tf.Graph().as_default(), tf.device('/cpu:0'):
    # Create a variable to count the number of train() calls. This equals the
    # number of batches processed * FLAGS.num_gpus.
    global_step = tf.get_variable(
        'global_step', [],
        initializer=tf.constant_initializer(0), trainable=False)

    # Calculate the learning rate schedule.
    num_batches_per_epoch = (cifar10.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
                             FLAGS.batch_size)
    decay_steps = int(num_batches_per_epoch * cifar10.NUM_EPOCHS_PER_DECAY)

    # Decay the learning rate exponentially based on the number of steps.
    lr = tf.train.exponential_decay(cifar10.INITIAL_LEARNING_RATE,
                                    global_step,
                                    decay_steps,
                                    cifar10.LEARNING_RATE_DECAY_FACTOR,
                                    staircase=True)

    # Create an optimizer that performs gradient descent.
    opt = tf.train.GradientDescentOptimizer(lr)

    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs()
    batch_queue = tf.contrib.slim.prefetch_queue.prefetch_queue(
          [images, labels], capacity=2 * FLAGS.num_gpus)
    # Calculate the gradients for each model tower.
    tower_grads = []
    with tf.variable_scope(tf.get_variable_scope()):
      for i in xrange(FLAGS.num_gpus):
        with tf.device('/gpu:%d' % i):
          with tf.name_scope('%s_%d' % (cifar10.TOWER_NAME, i)) as scope:
            # Dequeues one batch for the GPU
            image_batch, label_batch = batch_queue.dequeue()
            # Calculate the loss for one tower of the CIFAR model. This function
            # constructs the entire CIFAR model but shares the variables across
            # all towers.
            loss = tower_loss(scope, image_batch, label_batch)

            # Reuse variables for the next tower.
            tf.get_variable_scope().reuse_variables()

            # Retain the summaries from the final tower.
            summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)

            # Calculate the gradients for the batch of data on this CIFAR tower.
            grads = opt.compute_gradients(loss)

            # Keep track of the gradients across all towers.
            tower_grads.append(grads)

    # We must calculate the mean of each gradient. Note that this is the
    # synchronization point across all towers.
    grads = average_gradients(tower_grads)

    # Add a summary to track the learning rate.
    summaries.append(tf.summary.scalar('learning_rate', lr))

    # Add histograms for gradients.
    for grad, var in grads:
      if grad is not None:
        summaries.append(tf.summary.histogram(var.op.name + '/gradients', grad))

    # Apply the gradients to adjust the shared variables.
    apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

    # Add histograms for trainable variables.
    for var in tf.trainable_variables():
      summaries.append(tf.summary.histogram(var.op.name, var))

    # Track the moving averages of all trainable variables.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY, global_step)
    variables_averages_op = variable_averages.apply(tf.trainable_variables())

    # Group all updates to into a single train op.
    train_op = tf.group(apply_gradient_op, variables_averages_op)

    # Create a saver.
    saver = tf.train.Saver(tf.global_variables())

    # Build the summary operation from the last tower summaries.
    summary_op = tf.summary.merge(summaries)

    # Build an initialization operation to run below.
    init = tf.global_variables_initializer()

    # Start running operations on the Graph. allow_soft_placement must be set to
    # True to build towers on GPU, as some of the ops do not have GPU
    # implementations.
    sess = tf.Session(config=tf.ConfigProto(
        allow_soft_placement=True,
        log_device_placement=FLAGS.log_device_placement))
    sess.run(init)

    # Start the queue runners.
    tf.train.start_queue_runners(sess=sess)

    summary_writer = tf.summary.FileWriter(FLAGS.train_dir, sess.graph)

    for step in xrange(FLAGS.max_steps):
      start_time = time.time()
      _, loss_value = sess.run([train_op, loss])
      duration = time.time() - start_time

      assert not np.isnan(loss_value), 'Model diverged with loss = NaN'

      if step % 10 == 0:
        num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
        examples_per_sec = num_examples_per_step / duration
        sec_per_batch = duration / FLAGS.num_gpus

        format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                      'sec/batch)')
        print (format_str % (datetime.now(), step, loss_value,
                             examples_per_sec, sec_per_batch))

      if step % 100 == 0:
        summary_str = sess.run(summary_op)
        summary_writer.add_summary(summary_str, step)

      # Save the model checkpoint periodically.
      if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
        checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
        saver.save(sess, checkpoint_path, global_step=step)