예제 #1
0
def tower_loss(scope, images, labels):
  """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
    images: Images. 4D tensor of shape [batch_size, height, width, 3].
    labels: Labels. 1D tensor of shape [batch_size].

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """

  # Build inference Graph.
  logits = cifar10.inference(images)

  # Build the portion of the Graph calculating the losses. Note that we will
  # assemble the total_loss using a custom function below.
  _ = cifar10.loss(logits, labels)

  # Assemble all of the losses for the current tower only.
  losses = tf.get_collection('losses', scope)

  # Calculate the total loss for the current tower.
  total_loss = tf.add_n(losses, name='total_loss')

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
    # session. This helps the clarity of presentation on tensorboard.
    loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
    tf.summary.scalar(loss_name, l)

  return total_loss
예제 #2
0
def evaluate():
  """Eval CIFAR-10 for a number of steps."""
  with tf.Graph().as_default():
    # Get images and labels for CIFAR-10.
    eval_data = FLAGS.eval_data == 'test'
    images, labels = cifar10.inputs(eval_data=eval_data)
    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)
    # Calculate predictions.
    top_k_op = tf.nn.in_top_k(logits, labels, 1)
    # Restore the moving average version of the learned variables for eval.
    variable_averages = tf.train.ExponentialMovingAverage(
        cifar10.MOVING_AVERAGE_DECAY)
    variables_to_restore = variable_averages.variables_to_restore()
    saver = tf.train.Saver(variables_to_restore)
    # Build the summary operation based on the TF collection of Summaries.
    summary_op = tf.merge_all_summaries()
    graph_def = tf.get_default_graph().as_graph_def()
    summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir,
                                            graph_def=graph_def)
    while True:
      eval_once(saver, summary_writer, top_k_op, summary_op)
      if FLAGS.run_once:
        break
      time.sleep(FLAGS.eval_interval_secs)
예제 #3
0
def tower_loss(scope):
    """Calculate the total loss on a single tower running the CIFAR model.
  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs()
    # Build inference Graph.
    logits = cifar10.inference(images)
    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = cifar10.loss(logits, labels)
    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)
    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')
    # Compute the moving average of all individual losses and the total loss.
    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
    loss_averages_op = loss_averages.apply(losses + [total_loss])
    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
        # Name each loss as '(raw)' and name the moving average version of the loss
        # as the original loss name.
        tf.scalar_summary(loss_name + ' (raw)', l)
        tf.scalar_summary(loss_name, loss_averages.average(l))
    with tf.control_dependencies([loss_averages_op]):
        total_loss = tf.identity(total_loss)
    return total_loss
예제 #4
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.train.get_or_create_global_step()

        # Get images and labels for CIFAR-10.
        # Force input pipeline to CPU:0 to avoid operations sometimes ending up on
        # GPU and resulting in a slow down.
        with tf.device('/cpu:0'):
            images, labels = cifar10.distorted_inputs()

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)

        class _LoggerHook(tf.train.SessionRunHook):
            """Logs loss and runtime."""
            def begin(self):
                self._step = -1
                self._start_time = time.time()

            def before_run(self, run_context):
                self._step += 1
                return tf.train.SessionRunArgs(loss)  # Asks for loss value.

            def after_run(self, run_context, run_values):
                if self._step % FLAGS.log_frequency == 0:
                    current_time = time.time()
                    duration = current_time - self._start_time
                    self._start_time = current_time

                    loss_value = run_values.results
                    examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
                    sec_per_batch = float(duration / FLAGS.log_frequency)

                    format_str = (
                        '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
                    print(format_str % (datetime.now(), self._step, loss_value,
                                        examples_per_sec, sec_per_batch))

        with tf.train.MonitoredTrainingSession(
                checkpoint_dir=FLAGS.train_dir,
                hooks=[
                    tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
                    tf.train.NanTensorHook(loss),
                    _LoggerHook()
                ],
                config=tf.ConfigProto(log_device_placement=FLAGS.
                                      log_device_placement)) as mon_sess:
            while not mon_sess.should_stop():
                mon_sess.run(train_op)
예제 #5
0
def train():
    """Train CIFAR-10 for a number of steps."""
    with tf.Graph().as_default():
        global_step = tf.Variable(0, trainable=False)
        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs()
        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images)
        # Calculate loss.
        loss = cifar10.loss(logits, labels)
        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step)
        # Create a saver.
        saver = tf.train.Saver(tf.all_variables())
        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()
        # Build an initialization operation to run below.
        init = tf.initialize_all_variables()
        # Start running operations on the Graph.
        sess = tf.Session(config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement))
        sess.run(init)
        # Start the queue runners.
        tf.train.start_queue_runners(sess=sess)
        summary_writer = tf.train.SummaryWriter(FLAGS.train_dir,
                                                graph_def=sess.graph_def)
        for step in xrange(FLAGS.max_steps):
            start_time = time.time()
            _, loss_value = sess.run([train_op, loss])
            duration = time.time() - start_time
            assert not np.isnan(loss_value), 'Model diverged with loss = NaN'
            if step % 10 == 0:
                num_examples_per_step = FLAGS.batch_size
                examples_per_sec = num_examples_per_step / duration
                sec_per_batch = float(duration)
                format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                              'sec/batch)')
                print(format_str % (datetime.now(), step, loss_value,
                                    examples_per_sec, sec_per_batch))
            if step % 100 == 0:
                summary_str = sess.run(summary_op)
                summary_writer.add_summary(summary_str, step)
            # Save the model checkpoint periodically.
            if step % 1000 == 0 or (step + 1) == FLAGS.max_steps:
                checkpoint_path = os.path.join(FLAGS.train_dir, 'model.ckpt')
                saver.save(sess, checkpoint_path, global_step=step)
예제 #6
0
def evaluate(image, summary_dir):
    """Eval CIFAR-10 for a number of steps."""
    with tf.Graph().as_default() as g:

        height = 220
        width = 220

        # Build a Graph that computes the logits predictions from the
        # inference model.

        tf_im = tf.image.per_image_whitening(
            tf.image.resize_image_with_crop_or_pad(tf.cast(image, tf.float32),
                                                   width, height))
        bimage, label_batch = tf.train.batch([tf_im, 0],
                                             batch_size=1,
                                             num_threads=1,
                                             capacity=4)

        inference = cifar10.inference(bimage)
        logits = tf.nn.softmax(inference)
        top_k_op = tf.nn.in_top_k(logits, [0], 1)

        # Restore the moving average version of the learned variables for eval.
        variable_averages = tf.train.ExponentialMovingAverage(
            cifar10.MOVING_AVERAGE_DECAY)
        variables_to_restore = variable_averages.variables_to_restore()
        saver = tf.train.Saver(variables_to_restore)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.merge_all_summaries()

        summary_writer = tf.train.SummaryWriter(FLAGS.eval_dir, g)

        while True:
            eval_once(saver, summary_writer, summary_dir, inference, logits,
                      top_k_op)
            if FLAGS.run_once:
                break
            time.sleep(FLAGS.eval_interval_secs)
예제 #7
0
def tower_loss(scope, args):
    """Calculate the total loss on a single tower running the CIFAR model.

  Args:
    scope: unique prefix string identifying the CIFAR tower, e.g. 'tower_0'
    args: Command line arguments.

  Returns:
     Tensor of shape [] containing the total loss for a batch of data
  """
    # Get images and labels for CIFAR-10.
    images, labels = cifar10.distorted_inputs(args.data_dir, args.batch_size,
                                              args.use_fp16)

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images, args.batch_size, args.use_fp16)

    # Build the portion of the Graph calculating the losses. Note that we will
    # assemble the total_loss using a custom function below.
    _ = cifar10.loss(logits, labels)

    # Assemble all of the losses for the current tower only.
    losses = tf.get_collection('losses', scope)

    # Calculate the total loss for the current tower.
    total_loss = tf.add_n(losses, name='total_loss')

    # Attach a scalar summary to all individual losses and the total loss; do the
    # same for the averaged version of the losses.
    for l in losses + [total_loss]:
        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
        # session. This helps the clarity of presentation on tensorboard.
        loss_name = re.sub('%s_[0-9]*/' % cifar10.TOWER_NAME, '', l.op.name)
        tf.summary.scalar(loss_name, l)

    return total_loss
예제 #8
0
def train(args):
    """Train CIFAR-10 for a number of steps.

  Args:
    args: The command line arguments.
  """

    with tf.Graph().as_default():

        # Create the global step
        global_step = tf.contrib.framework.create_global_step()

        # Get images and labels for CIFAR-10.
        images, labels = cifar10.distorted_inputs(args.data_dir,
                                                  args.batch_size,
                                                  args.use_fp16)

        # Build a Graph that computes the logits predictions from the
        # inference model.
        logits = cifar10.inference(images, args.batch_size, args.use_fp16)

        # Calculate loss.
        loss = cifar10.loss(logits, labels)

        # Build a Graph that trains the model with one batch of examples and
        # updates the model parameters.
        train_op = cifar10.train(loss, global_step, args.batch_size)

        scaffold = monitored_session.Scaffold()

        session_creator = monitored_session.ChiefSessionCreator(
            scaffold,
            checkpoint_dir=args.train_dir,
            config=tf.ConfigProto(
                log_device_placement=args.log_device_placement))

        hooks = [
            # Hook to save the model every N steps and at the end.
            basic_session_run_hooks.CheckpointSaverHook(
                args.train_dir,
                checkpoint_basename=CHECKPOINT_BASENAME,
                save_steps=args.checkpoint_interval_steps,
                scaffold=scaffold),

            # Hook to save a summary every N steps.
            basic_session_run_hooks.SummarySaverHook(
                save_steps=args.summary_interval_steps,
                output_dir=args.train_dir,
                scaffold=scaffold),

            # Hook to stop at step N.
            basic_session_run_hooks.StopAtStepHook(
                last_step=args.train_max_steps)
        ]

        # Start a new monitored session. This will automatically restart the
        # sessions if the parameter servers are preempted.
        with monitored_session.MonitoredSession(
                session_creator=session_creator, hooks=hooks) as sess:

            while not sess.should_stop():

                start_time = time.time()
                _, loss_value, global_step_value = sess.run(
                    [train_op, loss, global_step])
                duration = time.time() - start_time

                assert not np.isnan(
                    loss_value), 'Model diverged with loss = NaN'

                if global_step_value % 10 == 0:
                    num_examples_per_step = args.batch_size
                    examples_per_sec = num_examples_per_step / duration
                    sec_per_batch = float(duration)

                    logging.info(
                        ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                         'sec/batch)'), datetime.now(), global_step_value,
                        loss_value, examples_per_sec, sec_per_batch)