def generate_simon_version(n, rounds, a=8, b=1, c=2): simon = CipherDescription(2*n) for i in range(n): input_1 = "s{}".format((i-a)%n+n) input_2 = "s{}".format((i-b)%n+n) product = "t{}".format(2*i) simon.apply_and(input_1, input_2, product) input_3 = "s{}".format((i-c)%n+n) xor = "t{}".format(2*i+1) simon.apply_xor(product, input_3, xor) right_side = "s{}".format(i) simon.apply_xor(xor, right_side, right_side) for i in range(n): right_side = "s{}".format(i) left_side = "s{}".format(i+n) simon.apply_permutation( (right_side, left_side) ) simon.set_rounds(rounds) return simon
def generate_speck_version(n, a, b): speck = CipherDescription(2 * n) s = ['s{}'.format(i) for i in range(2 * n)] ''' if n == 16: a = 7 b = 2 else: a = 8 b = 3 ''' x = s[n:] y = s[:n] if n % a == 0: for j in range(a): shift = [ 's{}'.format(n + j + (i * (n - a)) % n) for i in range(n / a) ] speck.apply_permutation(shift) else: shift = ['s{}'.format(n + (i * (n - a)) % n) for i in range(n)] speck.apply_permutation(shift) speck.add_mod(x, y, x, n, 0) if n % b == 0: for j in range(b): shift = ['s{}'.format(j + i * b) for i in range(n / b)] speck.apply_permutation(shift) else: shift = ['s{}'.format((i * b) % n) for i in range(n)] speck.apply_permutation(shift) for i in range(n): speck.apply_xor(x[i], y[i], y[i]) return speck
def generate_chacha(r): size = 512 chacha = CipherDescription(size) n = 32 s = ['s{}'.format(i) for i in range(size)] t = ['t{}'.format(i) for i in range(size)] v = [] for i in range(16): v.append(s[i*n:(i+1)*n]) for j in range(r): for i in range(4): a,b,c,d = v[0+i], v[4+(i+(j&1)*1)%4], v[8+(i+(j&1)*2)%4], v[12+(i+(j&1)*3)%4] chacha.add_mod(a,b,a,n,size) for l in range(n): chacha.apply_xor(d[l],a[l],t[l]) for l in range(n): chacha.apply_mov(t[(l-16)%n],d[l]) chacha.add_mod(c,d,c,n,size) for l in range(n): chacha.apply_xor(b[l],c[l],t[l]) for l in range(n): chacha.apply_mov(t[(l-12)%n],b[l]) chacha.add_mod(a,b,a,n,size) for l in range(n): chacha.apply_xor(d[l],a[l],t[l]) for l in range(n): chacha.apply_mov(t[(l-8)%n],d[l]) chacha.add_mod(c,d,c,n,size) for l in range(n): chacha.apply_xor(b[l],c[l],t[l]) for l in range(n): chacha.apply_mov(t[(l-7)%n],b[l]) return chacha
0xd5, 0xdb, 0x37, 0x45, 0xde, 0xfd, 0x8e, 0x2f, 0x03, 0xff, 0x6a, 0x72, 0x6d, 0x6c, 0x5b, 0x51, 0x8d, 0x1b, 0xaf, 0x92, 0xbb, 0xdd, 0xbc, 0x7f, 0x11, 0xd9, 0x5c, 0x41, 0x1f, 0x10, 0x5a, 0xd8, 0x0a, 0xc1, 0x31, 0x88, 0xa5, 0xcd, 0x7b, 0xbd, 0x2d, 0x74, 0xd0, 0x12, 0xb8, 0xe5, 0xb4, 0xb0, 0x89, 0x69, 0x97, 0x4a, 0x0c, 0x96, 0x77, 0x7e, 0x65, 0xb9, 0xf1, 0x09, 0xc5, 0x6e, 0xc6, 0x84, 0x18, 0xf0, 0x7d, 0xec, 0x3a, 0xdc, 0x4d, 0x20, 0x79, 0xee, 0x5f, 0x3e, 0xd7, 0xcb, 0x39, 0x48] SM4.add_sbox('sbox',Sbox) for i in range(32): SM4.apply_xor(s[32 + i], s[64 + i], t[i]) SM4.apply_xor(t[i], s[96 + i], t[i]) # S-box Layer for i in range(4): sbox_bits = t[8*i:8*(i + 1)] SM4.apply_sbox('sbox',sbox_bits,sbox_bits) # Linear Layer for i in range(32): SM4.apply_xor(t[i], s[i], s[i]) SM4.apply_xor(s[i], t[(i + 2) % 32], s[i]) SM4.apply_xor(s[i], t[(i + 10) % 32], s[i]) SM4.apply_xor(s[i], t[(i + 18) % 32], s[i]) SM4.apply_xor(s[i], t[(i + 24) % 32], s[i])
def generate_skinny_version(wordsize, rounds): # State # 0 1 2 3 # 4 5 6 7 # 8 9 10 11 # 12 13 14 15 if wordsize == 4: skinny_sbox = [ 0xC, 0x6, 0x9, 0x0, 0x1, 0xa, 0x2, 0xb, 0x3, 0x8, 0x5, 0xd, 0x4, 0xe, 0x7, 0xf ] elif wordsize == 8: skinny_sbox = [ 0x65, 0x4c, 0x6a, 0x42, 0x4b, 0x63, 0x43, 0x6b, 0x55, 0x75, 0x5a, 0x7a, 0x53, 0x73, 0x5b, 0x7b, 0x35, 0x8c, 0x3a, 0x81, 0x89, 0x33, 0x80, 0x3b, 0x95, 0x25, 0x98, 0x2a, 0x90, 0x23, 0x99, 0x2b, 0xe5, 0xcc, 0xe8, 0xc1, 0xc9, 0xe0, 0xc0, 0xe9, 0xd5, 0xf5, 0xd8, 0xf8, 0xd0, 0xf0, 0xd9, 0xf9, 0xa5, 0x1c, 0xa8, 0x12, 0x1b, 0xa0, 0x13, 0xa9, 0x05, 0xb5, 0x0a, 0xb8, 0x03, 0xb0, 0x0b, 0xb9, 0x32, 0x88, 0x3c, 0x85, 0x8d, 0x34, 0x84, 0x3d, 0x91, 0x22, 0x9c, 0x2c, 0x94, 0x24, 0x9d, 0x2d, 0x62, 0x4a, 0x6c, 0x45, 0x4d, 0x64, 0x44, 0x6d, 0x52, 0x72, 0x5c, 0x7c, 0x54, 0x74, 0x5d, 0x7d, 0xa1, 0x1a, 0xac, 0x15, 0x1d, 0xa4, 0x14, 0xad, 0x02, 0xb1, 0x0c, 0xbc, 0x04, 0xb4, 0x0d, 0xbd, 0xe1, 0xc8, 0xec, 0xc5, 0xcd, 0xe4, 0xc4, 0xed, 0xd1, 0xf1, 0xdc, 0xfc, 0xd4, 0xf4, 0xdd, 0xfd, 0x36, 0x8e, 0x38, 0x82, 0x8b, 0x30, 0x83, 0x39, 0x96, 0x26, 0x9a, 0x28, 0x93, 0x20, 0x9b, 0x29, 0x66, 0x4e, 0x68, 0x41, 0x49, 0x60, 0x40, 0x69, 0x56, 0x76, 0x58, 0x78, 0x50, 0x70, 0x59, 0x79, 0xa6, 0x1e, 0xaa, 0x11, 0x19, 0xa3, 0x10, 0xab, 0x06, 0xb6, 0x08, 0xba, 0x00, 0xb3, 0x09, 0xbb, 0xe6, 0xce, 0xea, 0xc2, 0xcb, 0xe3, 0xc3, 0xeb, 0xd6, 0xf6, 0xda, 0xfa, 0xd3, 0xf3, 0xdb, 0xfb, 0x31, 0x8a, 0x3e, 0x86, 0x8f, 0x37, 0x87, 0x3f, 0x92, 0x21, 0x9e, 0x2e, 0x97, 0x27, 0x9f, 0x2f, 0x61, 0x48, 0x6e, 0x46, 0x4f, 0x67, 0x47, 0x6f, 0x51, 0x71, 0x5e, 0x7e, 0x57, 0x77, 0x5f, 0x7f, 0xa2, 0x18, 0xae, 0x16, 0x1f, 0xa7, 0x17, 0xaf, 0x01, 0xb2, 0x0e, 0xbe, 0x07, 0xb7, 0x0f, 0xbf, 0xe2, 0xca, 0xee, 0xc6, 0xcf, 0xe7, 0xc7, 0xef, 0xd2, 0xf2, 0xde, 0xfe, 0xd7, 0xf7, 0xdf, 0xff ] # ShiftRows shiftrows = [] for bit in range(wordsize): # Second Row shiftrows.append([ "s{}".format(wordsize * 4 + bit), "s{}".format(wordsize * 5 + bit), "s{}".format(wordsize * 6 + bit), "s{}".format(wordsize * 7 + bit) ]) # Third Row shiftrows.append([ "s{}".format(wordsize * 8 + bit), "s{}".format(wordsize * 10 + bit) ]) shiftrows.append([ "s{}".format(wordsize * 9 + bit), "s{}".format(wordsize * 11 + bit) ]) # Fourth Row shiftrows.append([ "s{}".format(wordsize * 12 + bit), "s{}".format(wordsize * 15 + bit), "s{}".format(wordsize * 14 + bit), "s{}".format(wordsize * 13 + bit) ]) skinny = CipherDescription(wordsize * 16) skinny.add_sbox('S-box', skinny_sbox) # SubCells for word in range(16): bits = ["s{}".format(wordsize * word + i) for i in range(wordsize)] skinny.apply_sbox('S-box', bits, bits) # ShiftRows for shift in shiftrows: skinny.apply_permutation(shift) # MixColumns for col in range(4): for bit in range(wordsize): x0 = "s{}".format(bit + col * wordsize) x1 = "s{}".format(bit + 4 * wordsize + col * wordsize) x2 = "s{}".format(bit + 4 * 2 * wordsize + col * wordsize) x3 = "s{}".format(bit + 4 * 3 * wordsize + col * wordsize) skinny.apply_xor(x1, x2, x1) skinny.apply_xor(x2, x0, x2) skinny.apply_xor(x2, x3, x3) skinny.apply_permutation([x0, x1, x2, x3]) return skinny
def S(): for i in range(8): bits = ['t{}'.format(i + 8 * j) for j in range(4)] bits.reverse() RoadRunnerR.apply_sbox('Sbox', bits, bits) def L(): for i in range(size / 2): RoadRunnerR.apply_mov(t[i], t[size / 2 + i]) for i in range(size / 2): RoadRunnerR.apply_xor(t[i], t[size / 2 + 8 * (i / 8) + (i + 1) % 8], t[i]) RoadRunnerR.apply_xor(t[i], t[size / 2 + 8 * (i / 8) + (i + 2) % 8], t[i]) S() L() S() L() S() L() S() for i in range(size / 2): RoadRunnerR.apply_xor(s[size / 2 + i], t[i], s[size / 2 + i]) swap = [1, 0] RoadRunnerR.shufflewords(swap, size / 2, 1)
# Theta for col in range(5): for bit in range(lanesize): row_1 = "s{}".format(bit + col * lanesize) row_2 = "s{}".format(bit + 5 * lanesize + col * lanesize) row_3 = "s{}".format(bit + 10 * lanesize + col * lanesize) row_4 = "s{}".format(bit + 15 * lanesize + col * lanesize) row_5 = "s{}".format(bit + 20 * lanesize + col * lanesize) #TODO: Add XOR with multiple inputs? xor_1 = "tC0{}".format(bit + lanesize * col) xor_2 = "tC1{}".format(bit + lanesize * col) xor_3 = "tC2{}".format(bit + lanesize * col) xor_C = "tC_{}".format(bit + lanesize * col) keccak.apply_xor(row_1, row_2, xor_1) keccak.apply_xor(xor_1, row_3, xor_2) keccak.apply_xor(xor_2, row_4, xor_3) keccak.apply_xor(xor_3, row_5, xor_C) for col in range(5): for bit in range(lanesize): C = "tC_{}".format(bit + lanesize * ((col - 1) % 5)) # C[col-1] Crot = "tC_{}".format((bit - 1) % lanesize + lanesize * ((col + 1) % 5)) # C[col+1] <<< 1 xor_D = "tD{}".format(bit + lanesize * col) keccak.apply_xor(C, Crot, xor_D) for row in range(5): for col in range(5): for bit in range(lanesize):
from cipher_description import CipherDescription size = 64 TWINE = CipherDescription(size) s = ['s{}'.format(i) for i in range(size)] t = ['t{}'.format(i) for i in range(size)] Sbox = [0xC, 0, 0xF, 0xA, 2, 0xB, 9, 5, 8, 3, 0xD, 7, 1, 0xE, 6, 4] p = [5, 0, 1, 4, 7, 12, 3, 8, 13, 6, 9, 2, 15, 10, 11, 14] TWINE.add_sbox('sbox', Sbox) for i in range(8): for j in range(4): TWINE.apply_mov(s[8 * i + j], t[4 * i + j]) bits = t[4 * i:4 * (i + 1)] bits.reverse() TWINE.apply_sbox('sbox', bits, bits) for j in range(4): TWINE.apply_xor(t[4 * i + j], s[8 * i + 4 + j], s[8 * i + 4 + j]) TWINE.shufflewords(p, 4, 0)
c = 3 d = 26 e = 9 f = 0 # newz = rotate(x ^ (z << 1) ^ ((y&z) << a),d); # newy = rotate(y ^ x ^ ((x|z) << b),e); # newx = rotate(z ^ y ^ ((x&y) << c),f); # new z for bit in range(32): gimli.apply_and("s{}".format(wordsize + bit), "s{}".format(2 * wordsize + bit), "tand0{}".format(bit)) for bit in range(a, 32): gimli.apply_xor("s{}".format(0 + bit), "tand0{}".format(bit - a), "txor{}".format(bit)) for bit in range(0, a): gimli.apply_and("s{}".format(0 + bit), "s{}".format(0 + bit), "txor{}".format(bit)) for bit in range(0, 1): gimli.apply_and("txor{}".format(bit), "txor{}".format(bit), "tnewz{}".format(bit)) for bit in range(1, 32): gimli.apply_xor("txor{}".format(bit), "s{}".format(2 * wordsize + bit - 1), "tnewz{}".format(bit)) # new z for bit in range(32): gimli.apply_and("s{}".format(0 + bit), "s{}".format(2 * wordsize + bit), "tor{}".format(bit)) # TODO: Replace with or?
from cipher_description import CipherDescription bivium = CipherDescription(177) bivium.apply_xor("s65", "s92", "t0") bivium.apply_and("s90", "s91", "t1") bivium.apply_xor("t0", "t1", "t2") bivium.apply_xor("t2", "s170", "s92") bivium.apply_xor("s161", "s176", "t3") bivium.apply_and("s174", "s175", "t4") bivium.apply_xor("t3", "t4", "t5") bivium.apply_xor("t5", "s68", "s176") switch_last_bits = ("s92", "s176") bivium.apply_permutation(switch_last_bits) permutation_1 = tuple("s{}".format(i) for i in range(93)) permutation_2 = tuple("s{}".format(i) for i in range(93, 177)) bivium.apply_permutation(permutation_1) bivium.apply_permutation(permutation_2) bivium.set_rounds(708)
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9, 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17, 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25, 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1 ] for i in range(48): DES.apply_mov(s[32 + E[i] - 1], t[i]) #S-box layer for i in range(1, 9): input_bits = t[(i - 1) * 6:i * 6] output_bits = t[(i - 1) * 4:i * 4] DES.apply_sbox('S-box{}'.format(i), input_bits, output_bits) #P-box P = [ 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10, 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25 ] for i in range(32): DES.apply_mov(t[P[i] - 1], t[32 + i]) #Compression for i in range(32): DES.apply_xor(s[i], t[32 + i], s[i]) #swap shuffle = [1, 0] DES.shufflewords(shuffle, 32, 0)
from cipher_description import CipherDescription #Bit numbering #s63..s0 HIGHT = CipherDescription(64) n = 8 s = ['s{}'.format(i) for i in range(64)] t = ['t{}'.format(i) for i in range(64)] for i in range(n): HIGHT.apply_xor(s[(i+3)%n],s[(i+4)%n],'t{}'.format(i)) HIGHT.apply_xor(s[(i+6)%n],'t{}'.format(i),'t{}'.format(i)) HIGHT.apply_xor(s[16+(i+1)%n],s[16+(i+2)%n],'t{}'.format(16+i)) HIGHT.apply_xor(s[16+(i+7)%n],'t{}'.format(16+i),'t{}'.format(16+i)) HIGHT.apply_xor(s[32+(i+3)%n],s[32+(i+4)%n],'t{}'.format(32+i)) HIGHT.apply_xor(s[32+(i+6)%n],'t{}'.format(32+i),'t{}'.format(32+i)) HIGHT.apply_xor(s[48+(i+1)%n],s[48+(i+2)%n],'t{}'.format(48+i)) HIGHT.apply_xor(s[48+(i+7)%n],'t{}'.format(48+i),'t{}'.format(48+i)) HIGHT.add_mod(t[:8],s[8:16],s[8:16],n,64) HIGHT.add_mod(t[32:40],s[40:48],s[40:48],n,128) HIGHT.addconstant_mod(t[16:24],t[16:24],n,192) HIGHT.addconstant_mod(t[48:56],t[48:56],n,256) for i in range(n): HIGHT.apply_xor(t[16+i],s[24+i],s[24+i]) HIGHT.apply_xor(t[48+i],s[56+i],s[56+i])
s3 = [7, 6, 8, 11, 0, 15, 3, 14, 9, 10, 12, 13, 5, 2, 4, 1] s4 = [14, 5, 15, 0, 7, 2, 12, 13, 1, 8, 4, 9, 11, 10, 6, 3] s5 = [2, 13, 11, 12, 15, 14, 0, 9, 7, 10, 6, 3, 1, 8, 4, 5] s6 = [11, 9, 4, 14, 0, 15, 10, 13, 6, 12, 5, 7, 3, 8, 1, 2] s7 = [13, 10, 15, 0, 14, 4, 9, 11, 2, 1, 8, 3, 7, 5, 12, 6] LBlock.add_sbox('S0', s0) LBlock.add_sbox('S1', s1) LBlock.add_sbox('S2', s2) LBlock.add_sbox('S3', s3) LBlock.add_sbox('S4', s4) LBlock.add_sbox('S5', s5) LBlock.add_sbox('S6', s6) LBlock.add_sbox('S7', s7) shuffle1 = [1, 0] shuffle2 = [1, 2, 3, 0] shuffle3 = [4, 12, 0, 8, 20, 28, 16, 24] LBlock.shufflewords(shuffle2, 8, 0) for i in range(size / 2): LBlock.apply_mov(s[i + 32], t[i]) for i in range(8): bits = t[4 * i:4 * (i + 1)] bits.reverse() LBlock.apply_sbox('S{}'.format(i), bits, bits) for i in range(size / 2): LBlock.apply_xor(t[shuffle3[i / 4] + i % 4], s[i], s[i]) LBlock.shufflewords(shuffle1, 32, 0)
v0 = s[0:32] v1 = s[32:64] v2 = s[64:96] v3 = s[96:128] chaskey.add_mod(v0, v1, v0, n, 0) chaskey.add_mod(v2, v3, v2, n, 0) shuffle = [i for i in range(size)] for i in range(n): shuffle[n + i] = n + (i + 5) % n shuffle[3 * n + i] = 3 * n + (i + 8) % n chaskey.shufflewords(shuffle, 1, 0) for i in range(n): chaskey.apply_xor(v0[i], v1[i], v1[i]) chaskey.apply_xor(v2[i], v3[i], v3[i]) shuffle = [i for i in range(size)] for i in range(n): shuffle[i] = (i + 16) % n chaskey.shufflewords(shuffle, 1, 0) chaskey.add_mod(v2, v1, v2, n, 0) chaskey.add_mod(v0, v3, v0, n, 0) shuffle = [i for i in range(size)] for i in range(n): shuffle[n + i] = n + (i + 7) % n shuffle[3 * n + i] = 3 * n + (i + 13) % n chaskey.shufflewords(shuffle, 1, 0)
def sparx_version(size, r, Ae): sparx = CipherDescription(size) s = ['s{}'.format(i) for i in range(size)] if size == 64: rs = 3 elif size == 128: rs = 4 def A(h): n = 16 a = 7 b = 2 x = s[h + n:h + 2 * n] y = s[h:h + n] shift = ['s{}'.format(h + n + (i * (n - a)) % n) for i in range(n)] sparx.apply_permutation(shift) sparx.add_mod(x, y, x, n, size + 2 * h) for j in range(b): shift = ['s{}'.format(h + j + i * b) for i in range(n / b)] sparx.apply_permutation(shift) for i in range(n): sparx.apply_xor(x[i], y[i], y[i]) for rnd in range(r): for i in range(rs): for j in range(size / 32): A(j * 32) t = ['t{}'.format(i) for i in range(size)] for i in range(size / 2): sparx.apply_mov(s[i + size / 2], t[i]) for i in range(size / 4): sparx.apply_xor(t[i], t[i + 16], t[i + size / 2]) if size == 128: for i in range(16): sparx.apply_xor(t[i + size / 2], t[i + 16 + size / 2], t[i + size / 2]) if size == 64: sw = [0, 1] elif size == 128: sw = [0, 3, 2, 1] for j in range(size / 32): for i in range(16): sparx.apply_xor(t[size / 2 + (i + 8) % 16], t[i + 16 * sw[j]], t[i + 16 * sw[j]]) for i in range(size / 2): sparx.apply_xor(s[i], t[i], s[i]) swap = [1, 0] sparx.shufflewords(swap, size / 2, 0) for i in range(Ae): for j in range(size / 32): A(j * 32) return sparx
bits = t[4 * i:4 * (i + 1)] bits.reverse() mibs.apply_sbox('S1', bits, bits) # Applying mixing layer for bit in range(wordsize): y1 = "t{}".format(bit) y2 = "t{}".format(bit + wordsize) y3 = "t{}".format(bit + 2 * wordsize) y4 = "t{}".format(bit + 3 * wordsize) y5 = "t{}".format(bit + 4 * wordsize) y6 = "t{}".format(bit + 5 * wordsize) y7 = "t{}".format(bit + 6 * wordsize) y8 = "t{}".format(bit + 7 * wordsize) mibs.apply_xor(y4, y8, y8) mibs.apply_xor(y3, y7, y7) mibs.apply_xor(y2, y6, y6) mibs.apply_xor(y1, y5, y5) mibs.apply_xor(y8, y2, y2) mibs.apply_xor(y7, y1, y1) mibs.apply_xor(y6, y4, y4) mibs.apply_xor(y5, y3, y3) mibs.apply_xor(y4, y5, y5) mibs.apply_xor(y3, y8, y8) mibs.apply_xor(y2, y7, y7) mibs.apply_xor(y1, y6, y6) mibs.apply_xor(y8, y4, y4) mibs.apply_xor(y7, y3, y3) mibs.apply_xor(y6, y2, y2) mibs.apply_xor(y5, y1, y1)
def generate_misty(R): misty = CipherDescription(64) S7 = [ 54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33, 55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81, 53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43, 20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98, 117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87, 112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66, 102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44, 64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3] S9 = [ 167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397, 183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177, 175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400, 95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76, 165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223, 501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163, 232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135, 344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27, 487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124, 475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364, 363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229, 439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277, 465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282, 173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330, 280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454, 132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374, 35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285, 50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32, 72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355, 185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190, 1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111, 336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18, 47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84, 414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201, 266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133, 311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404, 485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127, 312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398, 284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451, 97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402, 438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380, 43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461] misty.add_sbox('S7', S7) misty.add_sbox('S9', S9) shuffle = [1,0] def FL(bits): t = ["t{}".format(i) for i in range(16)] for i in range(16): misty.apply_mov(bits[i],t[i]) #key and ? for i in range(16): misty.apply_xor(t[i],bits[i+16],bits[i+16]) for i in range(16): misty.apply_mov(bits[i+16],t[i]) #key or ? for i in range(16): misty.apply_xor(t[i],bits[i],bits[i]) def FI(bits): misty.apply_sbox('S9', bits[8::-1],bits[8::-1]) for i in range(7): misty.apply_xor(bits[9+i],bits[i],bits[i]) misty.apply_sbox('S7', bits[:8:-1],bits[:8:-1]) for i in range(7): misty.apply_xor(bits[9+i],bits[i],bits[i+9]) misty.apply_sbox('S9', bits[8::-1],bits[8::-1]) for i in range(7): misty.apply_xor(bits[9+i],bits[i],bits[i]) t = ["t{}".format(i+128) for i in range(16)] for i in range(16): misty.apply_mov(bits[i],t[i]) for i in range(16): misty.apply_mov(t[(i+9)%16],bits[i]) def FO(bits): FI(bits[:16]) for i in range(16): misty.apply_xor(bits[16+i],bits[i],bits[i]) FI(bits[16:]) for i in range(16): misty.apply_xor(bits[16+i],bits[i],bits[i+16]) FI(bits[:16]) for i in range(16): misty.apply_xor(bits[16+i],bits[i],bits[i]) t = ["t{}".format(i+64) for i in range(16)] for i in range(16): misty.apply_mov(bits[i],t[i]) misty.apply_mov(bits[i+16],bits[i]) misty.apply_mov(t[i],bits[i+16]) state = ["s{}".format(i) for i in range(64)] t = ["t{}".format(i) for i in range(32)] for r in range(R): if r&1==0: FL(state[:32]) FL(state[32:]) for i in range(32): misty.apply_mov(state[i], t[i]) FO(t) for i in range(32): misty.apply_xor(state[i+32],t[i],state[i+32]) misty.shufflewords(shuffle,32,1) return misty
def generate_midori_version(wordsize, rounds): # State # 0 4 8 12 # 1 5 9 13 # 2 6 10 14 # 3 7 11 15 if wordsize == 4: midori_sbox = [ 0xC, 0xA, 0xD, 0x3, 0xE, 0xB, 0xF, 0x7, 0x8, 0x9, 0x1, 0x5, 0x0, 0x2, 0x4, 0x6 ] elif wordsize == 8: midori_sbox = [ 0x1, 0x0, 0x5, 0x3, 0xe, 0x2, 0xf, 0x7, 0xd, 0xa, 0x9, 0xb, 0xc, 0x8, 0x4, 0x6 ] # Shuffle Cells shuffle_cells = [] for bit in range(wordsize): shuffle_cells.append([ "s{}".format(wordsize * 10 + bit), "s{}".format(wordsize * 1 + bit), "s{}".format(wordsize * 7 + bit), "s{}".format(wordsize * 12 + bit) ]) shuffle_cells.append([ "s{}".format(wordsize * 5 + bit), "s{}".format(wordsize * 2 + bit), "s{}".format(wordsize * 14 + bit), "s{}".format(wordsize * 4 + bit) ]) shuffle_cells.append([ "s{}".format(wordsize * 15 + bit), "s{}".format(wordsize * 3 + bit), "s{}".format(wordsize * 9 + bit), "s{}".format(wordsize * 8 + bit) ]) shuffle_cells.append([ "s{}".format(wordsize * 11 + bit), "s{}".format(wordsize * 6 + bit) ]) midori = CipherDescription(wordsize * 16) midori.add_sbox('S-box', midori_sbox) # SubCell for i in range(16): if wordsize == 4: bits = [ "s{}".format(4 * i + 3), "s{}".format(4 * i + 2), "s{}".format(4 * i + 1), "s{}".format(4 * i + 0) ] midori.apply_sbox('S-box', bits, bits) else: # Apply bit permutation bit_perm = [sb_perm[i % 4][j] for j in range(8)] for cycle in decompose_permutation(bit_perm): cycle_bits = [] for v in cycle: cycle_bits.append("s{}".format(8 * i + v)) midori.apply_permutation(cycle_bits) # Apply S-box bits = [ "s{}".format(8 * i + 0), "s{}".format(8 * i + 1), "s{}".format(8 * i + 2), "s{}".format(8 * i + 3) ] midori.apply_sbox('S-box', bits, bits) bits = [ "s{}".format(8 * i + 4), "s{}".format(8 * i + 5), "s{}".format(8 * i + 6), "s{}".format(8 * i + 7) ] midori.apply_sbox('S-box', bits, bits) # Apply bit permutation bit_perm = [8 * i + sb_perminv[i % 4][j] for j in range(8)] for cycle in decompose_permutation(bit_perm): cycle_bits = [] for v in cycle: cycle_bits.append("s{}".format(8 * i + v)) midori.apply_permutation(cycle_bits) # ShuffleCell for shuffle in shuffle_cells: midori.apply_permutation(shuffle) # MixColumn for col in range(4): for bit in range(wordsize): x0 = "s{}".format(bit + col * wordsize * 4) x1 = "s{}".format(bit + wordsize + col * wordsize * 4) x2 = "s{}".format(bit + 2 * wordsize + col * wordsize * 4) x3 = "s{}".format(bit + 3 * wordsize + col * wordsize * 4) midori.apply_xor(x0, x1, "txor01") midori.apply_xor(x0, x2, "txor02") midori.apply_xor(x1, x2, "txor12") midori.apply_xor(x1, "txor12", "tx2") midori.apply_xor("txor12", x3, x0) midori.apply_xor("txor02", x3, x1) midori.apply_xor("txor01", x3, x2) midori.apply_xor("txor01", "tx2", x3) # midori.apply_xor(x0, x1, "txor01") # midori.apply_xor("txor01", x2, "tx3p") # # midori.apply_xor("txor01", x3, "tx2p") # # midori.apply_xor(x0, x2, "txor02") # midori.apply_xor("txor02", x3, "tx1p") # # midori.apply_xor(x1, x2, "txor12") # midori.apply_xor("txor12", x3, "tx0p") # # midori.apply_mov("tx0p", x0) # midori.apply_mov("tx1p", x1) # midori.apply_mov("tx2p", x2) # midori.apply_mov("tx3p", x3) return midori
from cipher_description import CipherDescription trivium = CipherDescription(288) trivium.apply_xor("s65", "s92", "t1") trivium.apply_xor("s161", "s176", "t2") trivium.apply_xor("s242", "s287", "t3") trivium.apply_and("s90", "s91", "tand1") trivium.apply_and("s174", "s175", "tand2") trivium.apply_and("s285", "s286", "tand3") trivium.apply_xor("t1", "tand1", "t1") trivium.apply_xor("t1", "s170", "s92") trivium.apply_xor("t2", "tand2", "t2") trivium.apply_xor("t2", "s263", "s176") trivium.apply_xor("t3", "tand3", "t3") trivium.apply_xor("t3", "s68", "s287") switch_last_bits = ("s92", "s176", "s287") trivium.apply_permutation(switch_last_bits) permutation_1 = tuple("s{}".format(i) for i in range(93)) permutation_2 = tuple("s{}".format(i) for i in range(93, 177)) permutation_3 = tuple("s{}".format(i) for i in range(177, 288)) trivium.apply_permutation(permutation_1) trivium.apply_permutation(permutation_2) trivium.apply_permutation(permutation_3) trivium.set_rounds(1152)
def ch(cipher, a, b, c, out): cipher.apply_and(a, b, "t1") cipher.apply_and(a, c, "t2") # TODO: Add not to first parameter cipher.apply_xor("t1", "t2", out) acorn = CipherDescription(293) # Compute Keystream Bit # k = s12 + s154 + maj(s256, s61, s193) # Majority maj(acorn, "s256", "s61", "s193", "tmaj1") acorn.apply_xor("s12", "s154", "t1") acorn.apply_xor("t1", "tmaj1", "tk") # Update State acorn.apply_xor("s289", "s235", "t1") acorn.apply_xor("t1", "s230", "s289") acorn.apply_xor("s230", "s196", "t1") acorn.apply_xor("t1", "s193", "s230") acorn.apply_xor("s193", "s160", "t1") acorn.apply_xor("t1", "s154", "s193") acorn.apply_xor("s154", "s111", "t1") acorn.apply_xor("t1", "s107", "s154") acorn.apply_xor("s107", "s66", "t1") acorn.apply_xor("t1", "s61", "s107") acorn.apply_xor("s61", "s23", "t1") acorn.apply_xor("t1", "s0", "s61")
d = s[:n] c = s[n:2 * n] b = s[2 * n:3 * n] a = s[3 * n:] #Step 1 for i in range(n): BelT.apply_mov(d[i], t[i]) BelT.apply_mov(a[i], t[3 * n + i]) BelT.addconstant_mod(t[:n], t[:n], n, 4 * n) BelT.addconstant_mod(t[3 * n:], t[3 * n:], n, 8 * n) t[:n] = G(t[:n], 21) t[3 * n:] = G(t[3 * n:], 5) for i in range(n): BelT.apply_xor(c[i], t[i], c[i]) BelT.apply_xor(b[i], t[3 * n + i], b[i]) #Step 2 for i in range(n): BelT.apply_mov(b[i], t[2 * n + i]) BelT.addconstant_mod(t[2 * n:3 * n], t[2 * n:3 * n], n, 12 * n) t[2 * n:3 * n] = G(t[2 * n:3 * n], 13) BelT.addconstant_mod(a, a, n, 16 * n) BelT.add_mod(a, t[2 * n:3 * n], a, n, 20 * n) #Step 3 for i in range(n): BelT.apply_mov(b[i], t[2 * n + i]) BelT.apply_mov(c[i], t[n + i])
def generate_Kreyvium_version(rounds): kreyvium = CipherDescription(416) for i in range(128): kreyvium.apply_mov("s{}".format(93+i), "s{}".format(288+i)) for r in range(rounds): kreyvium.apply_xor("s65", "s92", "t1") kreyvium.apply_xor("s161", "s176", "t2") kreyvium.apply_xor("s242", "s287", "t3") kreyvium.apply_and("s90", "s91", "tand1") kreyvium.apply_and("s174", "s175", "tand2") kreyvium.apply_and("s285", "s286", "tand3") kreyvium.apply_xor("t1", "tand1", "t1") kreyvium.apply_xor("t1", "s415", "t1") kreyvium.apply_xor("t1", "s170", "s92") kreyvium.apply_xor("t2", "tand2", "t2") kreyvium.apply_xor("t2", "s263", "s176") kreyvium.apply_xor("t3", "tand3", "t3") kreyvium.apply_xor("t3", "s68", "s287") switch_last_bits = ("s92", "s176", "s287") kreyvium.apply_permutation(switch_last_bits) permutation_1 = tuple("s{}".format(i) for i in range(93)) permutation_2 = tuple("s{}".format(i) for i in range(93, 177)) permutation_3 = tuple("s{}".format(i) for i in range(177, 288)) permutation_4 = tuple("s{}".format(i) for i in range(288, 416)) kreyvium.apply_permutation(permutation_1) kreyvium.apply_permutation(permutation_2) kreyvium.apply_permutation(permutation_3) kreyvium.apply_permutation(permutation_4) return kreyvium