def test_w_to_proto(): assert proto_matches_text( cg.ExpWGate(half_turns=Symbol('k'), axis_half_turns=1).to_proto(GridQubit(2, 3)), """ exp_w { target { row: 2 col: 3 } axis_half_turns { raw: 1 } half_turns { parameter_key: "k" } } """) assert proto_matches_text( cg.ExpWGate(half_turns=0.5, axis_half_turns=Symbol('j')).to_proto(GridQubit(2, 3)), """ exp_w { target { row: 2 col: 3 } axis_half_turns { parameter_key: "j" } half_turns { raw: 0.5 } } """)
def test_depolarizer_different_gate(): q1 = ops.QubitId() q2 = ops.QubitId() cnot = Job(circuits.Circuit([ circuits.Moment([ops.CNOT(q1, q2)]), ])) allerrors = DepolarizerChannel( probability=1.0, depolarizing_gates=[xmon_gates.ExpZGate(), xmon_gates.ExpWGate()]) p0 = Symbol(DepolarizerChannel._parameter_name + '0') p1 = Symbol(DepolarizerChannel._parameter_name + '1') p2 = Symbol(DepolarizerChannel._parameter_name + '2') p3 = Symbol(DepolarizerChannel._parameter_name + '3') error_sweep = (Points(p0.name, [1.0]) + Points(p1.name, [1.0]) + Points(p2.name, [1.0]) + Points(p3.name, [1.0])) cnot_then_z = Job( circuits.Circuit([ circuits.Moment([ops.CNOT(q1, q2)]), circuits.Moment([ xmon_gates.ExpZGate(half_turns=p0).on(q1), xmon_gates.ExpZGate(half_turns=p1).on(q2) ]), circuits.Moment([ xmon_gates.ExpWGate(half_turns=p2).on(q1), xmon_gates.ExpWGate(half_turns=p3).on(q2) ]) ]), cnot.sweep * error_sweep) assert allerrors.transform_job(cnot) == cnot_then_z
def test_w_potential_implementation(): assert not cirq.can_cast(cirq.KnownMatrix, cg.ExpWGate(half_turns=Symbol('a'))) assert not cirq.can_cast(cirq.ReversibleEffect, cg.ExpWGate(half_turns=Symbol('a'))) assert cirq.can_cast(cirq.KnownMatrix, cg.ExpWGate()) assert cirq.can_cast(cirq.ReversibleEffect, cg.ExpWGate())
def test_cz_eq(): eq = cirq.testing.EqualsTester() eq.make_equality_group(lambda: cg.Exp11Gate(half_turns=0)) eq.add_equality_group(cg.Exp11Gate(), cg.Exp11Gate(half_turns=1), cg.Exp11Gate(degs=180), cg.Exp11Gate(rads=np.pi)) eq.make_equality_group(lambda: cg.Exp11Gate(half_turns=Symbol('a'))) eq.make_equality_group(lambda: cg.Exp11Gate(half_turns=Symbol('b'))) eq.add_equality_group(cg.Exp11Gate(half_turns=-1.5), cg.Exp11Gate(half_turns=6.5))
def test_w_parameterize(): parameterized_gate = cg.ExpWGate(half_turns=Symbol('a'), axis_half_turns=Symbol('b')) assert parameterized_gate.is_parameterized() with pytest.raises(ValueError): _ = parameterized_gate.matrix() resolver = ParamResolver({'a': 0.1, 'b': 0.2}) resolved_gate = parameterized_gate.with_parameters_resolved_by(resolver) assert resolved_gate == cg.ExpWGate(half_turns=0.1, axis_half_turns=0.2)
def test_partial_reflection_gate_eq(): eq = EqualsTester() eq.add_equality_group(DummyGate(), DummyGate(half_turns=1)) eq.add_equality_group(DummyGate(half_turns=3.5), DummyGate(half_turns=-0.5)) eq.make_equality_group(lambda: DummyGate(half_turns=Symbol('a'))) eq.make_equality_group(lambda: DummyGate(half_turns=Symbol('b'))) eq.make_equality_group(lambda: DummyGate(half_turns=0)) eq.add_equality_group(DummyGate(half_turns=0.5), DummyGate(rads=np.pi / 2), DummyGate(degs=90))
def test_w_eq(): eq = cirq.testing.EqualsTester() eq.add_equality_group(cg.ExpWGate(), cg.ExpWGate(half_turns=1, axis_half_turns=0), cg.ExpWGate(degs=180, axis_degs=0), cg.ExpWGate(rads=np.pi, axis_rads=0)) eq.make_equality_group(lambda: cg.ExpWGate(half_turns=Symbol('a'))) eq.make_equality_group(lambda: cg.ExpWGate(half_turns=0)) eq.make_equality_group( lambda: cg.ExpWGate(half_turns=0, axis_half_turns=Symbol('a'))) eq.add_equality_group(cg.ExpWGate(half_turns=0, axis_half_turns=0.5), cg.ExpWGate(half_turns=0, axis_rads=np.pi / 2)) eq.make_equality_group(lambda: cg.ExpWGate(half_turns=Symbol('ab'), axis_half_turns=Symbol('xy'))) # Flipping the axis and negating the angle gives the same rotation. eq.add_equality_group(cg.ExpWGate(half_turns=0.25, axis_half_turns=1.5), cg.ExpWGate(half_turns=1.75, axis_half_turns=0.5)) # ...but not when there are parameters. eq.add_equality_group( cg.ExpWGate(half_turns=Symbol('a'), axis_half_turns=1.5)) eq.add_equality_group( cg.ExpWGate(half_turns=Symbol('a'), axis_half_turns=0.5)) eq.add_equality_group( cg.ExpWGate(half_turns=0.25, axis_half_turns=Symbol('a'))) eq.add_equality_group( cg.ExpWGate(half_turns=1.75, axis_half_turns=Symbol('a'))) # Adding or subtracting whole turns/phases gives the same rotation. eq.add_equality_group(cg.ExpWGate(half_turns=-2.25, axis_half_turns=1.25), cg.ExpWGate(half_turns=7.75, axis_half_turns=11.25))
def test_ignores_czs_separated_by_parameterized(): q0 = ops.QubitId() q1 = ops.QubitId() assert_optimizes( before=circuits.Circuit([ circuits.Moment([ops.CZ(q0, q1)]), circuits.Moment([ExpZGate( half_turns=Symbol('boo'))(q0)]), circuits.Moment([ops.CZ(q0, q1)]), ]), after=circuits.Circuit([ circuits.Moment([ops.CZ(q0, q1)]), circuits.Moment([ExpZGate( half_turns=Symbol('boo'))(q0)]), circuits.Moment([ops.CZ(q0, q1)]), ]))
def test_z_to_proto(): assert proto_matches_text( cg.ExpZGate(half_turns=Symbol('k')).to_proto(GridQubit(2, 3)), """ exp_z { target { row: 2 col: 3 } half_turns { parameter_key: "k" } } """) assert proto_matches_text( cg.ExpZGate(half_turns=0.5).to_proto(GridQubit(2, 3)), """ exp_z { target { row: 2 col: 3 } half_turns { raw: 0.5 } } """)
def transform_job(self, job): """Creates a new job object with depolarizing channel. This job will contain the existing Job's circuit with an error gate per qubit at every moment. Creates the parameter sweep for each gate and populates with random values as per the specifications of the depolarizer channel. Args: job: Job object to transform Returns: A new Job object that contains a circuit with up to double the moments as the original job, with every other moment being a moment containing error gates. It will also contain a Sweep containing values for each error gate. Note that moments that contain no error gates for any repetition will be automatically omitted. """ # A set for quick lookup of pre-existing qubits qubit_set = set() # A list with deterministic qubit order qubit_list = [] circuit = job.circuit # Retrieve the set of qubits used in the circuit for moment in circuit: for op in moment.operations: for qubit in op.qubits: if qubit not in qubit_set: qubit_set.add(qubit) qubit_list.append(qubit) # Add error circuits moments = [] error_number = 0 error_sweep = Zip() for moment in circuit: moments.append(moment) for gate in self.depolarizing_gates: error_gates = [] for q in qubit_list: errors = np.random.random(self.realizations) < self.p if any(errors): key = self._parameter_name + str(error_number) new_error_gate = gate**Symbol(key) error_gates.append(new_error_gate.on(q)) error_sweep += Points(key, list(errors * 1.0)) error_number += 1 if error_gates: moments.append(ops.Moment(error_gates)) sweep = job.sweep if error_sweep: sweep *= error_sweep return Job(Circuit(moments), sweep, job.repetitions)
def test_parameterized_value_from_proto(): from_proto = cg.XmonGate.parameterized_value_from_proto m1 = operations_pb2.ParameterizedFloat(raw=5) assert from_proto(m1) == 5 with pytest.raises(ValueError): from_proto(operations_pb2.ParameterizedFloat()) m3 = operations_pb2.ParameterizedFloat(parameter_key='rr') assert from_proto(m3) == Symbol('rr')
def test_depolarizer_multiple_realizations(): q1 = ops.QubitId() q2 = ops.QubitId() cnot = Job(circuits.Circuit([ circuits.Moment([ops.CNOT(q1, q2)]), ])) allerrors3 = DepolarizerChannel(probability=1.0, realizations=3) p0 = Symbol(DepolarizerChannel._parameter_name + '0') p1 = Symbol(DepolarizerChannel._parameter_name + '1') error_sweep = (Points(p0.name, [1.0, 1.0, 1.0]) + Points(p1.name, [1.0, 1.0, 1.0])) cnot_then_z3 = Job( circuits.Circuit([ circuits.Moment([ops.CNOT(q1, q2)]), circuits.Moment([ xmon_gates.ExpZGate(half_turns=p0).on(q1), xmon_gates.ExpZGate(half_turns=p1).on(q2) ]) ]), cnot.sweep * error_sweep) assert allerrors3.transform_job(cnot) == cnot_then_z3
def test_depolarizer_parameterized_gates(): q1 = ops.QubitId() q2 = ops.QubitId() cnot_param = Symbol('cnot_turns') cnot_gate = xmon_gates.Exp11Gate(half_turns=cnot_param).on(q1, q2) job_sweep = Points('cnot_turns', [0.5]) cnot = Job(circuits.Circuit([circuits.Moment([cnot_gate])]), job_sweep) allerrors = DepolarizerChannel(probability=1.0) p0 = Symbol(DepolarizerChannel._parameter_name + '0') p1 = Symbol(DepolarizerChannel._parameter_name + '1') error_sweep = Points(p0.name, [1.0]) + Points(p1.name, [1.0]) cnot_then_z = Job( circuits.Circuit([ circuits.Moment([cnot_gate]), circuits.Moment([ xmon_gates.ExpZGate(half_turns=p0).on(q1), xmon_gates.ExpZGate(half_turns=p1).on(q2) ]) ]), job_sweep * error_sweep) assert allerrors.transform_job(cnot) == cnot_then_z
def value_of(self, value: Union[Symbol, float, str]) -> Union[Symbol, float]: """Attempt to resolve a Symbol or name or float to its assigned value. If unable to resolve a Symbol, returns it unchanged. If unable to resolve a name, returns a Symbol with that name. Args: value: The Symbol or name or float to try to resolve into just a float. Returns: The value of the parameter as resolved by this resolver. """ if isinstance(value, str): return self.param_dict.get(value, Symbol(value)) if isinstance(value, Symbol): return self.param_dict.get(value.name, value) return value
def test_cz_to_proto(): assert proto_matches_text( cg.Exp11Gate(half_turns=Symbol('k')).to_proto(GridQubit(2, 3), GridQubit(4, 5)), """ exp_11 { target1 { row: 2 col: 3 } target2 { row: 4 col: 5 } half_turns { parameter_key: "k" } } """) assert proto_matches_text( cg.Exp11Gate(half_turns=0.5).to_proto(GridQubit(2, 3), GridQubit(4, 5)), """ exp_11 { target1 { row: 2 col: 3 } target2 { row: 4 col: 5 } half_turns { raw: 0.5 } } """)
def _values(sweep, key): p = Symbol(key) return [resolver.value_of(p) for resolver in sweep]
def test_value_of(): r = resolver.ParamResolver({'a': 0.5, 'b': 0.1}) assert r.value_of(Symbol('a')) == 0.5 assert r.value_of(0.5) == 0.5 assert r.value_of(Symbol('b')) == 0.1 assert r.value_of(0.3) == 0.3
def test_parameterized_value_init(): assert Symbol('a').name == 'a' assert Symbol('b').name == 'b'
def test_cz_potential_implementation(): assert not cirq.can_cast(cirq.KnownMatrix, cg.Exp11Gate(half_turns=Symbol('a'))) assert cirq.can_cast(cirq.KnownMatrix, cg.Exp11Gate())
def test_string_representation(): assert str(Symbol('a1')) == 'a1' assert str(Symbol('_b23_')) == '_b23_' assert str(Symbol('1a')) == 'Symbol("1a")' assert str(Symbol('&%#')) == 'Symbol("&%#")' assert str(Symbol('')) == 'Symbol("")'
def test_parameterized_value_eq(): eq = EqualsTester() eq.add_equality_group(Symbol('a')) eq.make_equality_pair(lambda: Symbol('rr'))
def test_partial_reflection_gate_with_parameters_resolved_by(): gate = DummyGate(half_turns=Symbol('a')) resolver = ParamResolver({'a': 0.1}) resolved_gate = gate.with_parameters_resolved_by(resolver) assert resolved_gate.half_turns == 0.1