예제 #1
0
def test_resolve(resolve_fn):
    diagonal_angles = [2, 3, 5, 7, 11, 13, 17, 19]
    diagonal_gate = cirq.ThreeQubitDiagonalGate(
        diagonal_angles[:6] + [sympy.Symbol('a'), sympy.Symbol('b')]
    )
    assert cirq.is_parameterized(diagonal_gate)

    diagonal_gate = resolve_fn(diagonal_gate, {'a': 17})
    assert diagonal_gate == cirq.ThreeQubitDiagonalGate(diagonal_angles[:7] + [sympy.Symbol('b')])
    assert cirq.is_parameterized(diagonal_gate)

    diagonal_gate = resolve_fn(diagonal_gate, {'b': 19})
    assert diagonal_gate == cirq.ThreeQubitDiagonalGate(diagonal_angles)
    assert not cirq.is_parameterized(diagonal_gate)
예제 #2
0
def test_diagram():
    a, b, c, d = cirq.LineQubit.range(4)
    circuit = cirq.Circuit(
        cirq.TOFFOLI(a, b, c),
        cirq.TOFFOLI(a, b, c)**0.5,
        cirq.CCX(a, c, b),
        cirq.CCZ(a, d, b),
        cirq.CCZ(a, d, b)**0.5,
        cirq.CSWAP(a, c, d),
        cirq.FREDKIN(a, b, c),
    )
    cirq.testing.assert_has_diagram(
        circuit,
        """
0: ───@───@───────@───@───@───────@───@───
      │   │       │   │   │       │   │
1: ───@───@───────X───@───@───────┼───×───
      │   │       │   │   │       │   │
2: ───X───X^0.5───@───┼───┼───────×───×───
                      │   │       │
3: ───────────────────@───@^0.5───×───────
""",
    )
    cirq.testing.assert_has_diagram(
        circuit,
        """
0: ---@---@-------@---@---@-------@------@------
      |   |       |   |   |       |      |
1: ---@---@-------X---@---@-------|------swap---
      |   |       |   |   |       |      |
2: ---X---X^0.5---@---|---|-------swap---swap---
                      |   |       |
3: -------------------@---@^0.5---swap----------
""",
        use_unicode_characters=False,
    )

    diagonal_circuit = cirq.Circuit(
        cirq.ThreeQubitDiagonalGate([2, 3, 5, 7, 11, 13, 17, 19])(a, b, c))
    cirq.testing.assert_has_diagram(
        diagonal_circuit,
        """
0: ───diag(2, 3, 5, 7, 11, 13, 17, 19)───
      │
1: ───#2─────────────────────────────────
      │
2: ───#3─────────────────────────────────
""",
    )
    cirq.testing.assert_has_diagram(
        diagonal_circuit,
        """
0: ---diag(2, 3, 5, 7, 11, 13, 17, 19)---
      |
1: ---#2---------------------------------
      |
2: ---#3---------------------------------
""",
        use_unicode_characters=False,
    )
예제 #3
0
def test_unitary():
    assert cirq.has_unitary(cirq.CCX)
    np.testing.assert_allclose(
        cirq.unitary(cirq.CCX),
        np.array([
            [1, 0, 0, 0, 0, 0, 0, 0],
            [0, 1, 0, 0, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 1, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0],
            [0, 0, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 1],
            [0, 0, 0, 0, 0, 0, 1, 0],
        ]),
        atol=1e-8,
    )

    assert cirq.has_unitary(cirq.CCX**0.5)
    np.testing.assert_allclose(
        cirq.unitary(cirq.CCX**0.5),
        np.array([
            [1, 0, 0, 0, 0, 0, 0, 0],
            [0, 1, 0, 0, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 1, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0],
            [0, 0, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 0.5 + 0.5j, 0.5 - 0.5j],
            [0, 0, 0, 0, 0, 0, 0.5 - 0.5j, 0.5 + 0.5j],
        ]),
        atol=1e-8,
    )

    assert cirq.has_unitary(cirq.CCZ)
    np.testing.assert_allclose(cirq.unitary(cirq.CCZ),
                               np.diag([1, 1, 1, 1, 1, 1, 1, -1]),
                               atol=1e-8)

    assert cirq.has_unitary(cirq.CCZ**0.5)
    np.testing.assert_allclose(cirq.unitary(cirq.CCZ**0.5),
                               np.diag([1, 1, 1, 1, 1, 1, 1, 1j]),
                               atol=1e-8)

    assert cirq.has_unitary(cirq.CSWAP)
    np.testing.assert_allclose(
        cirq.unitary(cirq.CSWAP),
        np.array([
            [1, 0, 0, 0, 0, 0, 0, 0],
            [0, 1, 0, 0, 0, 0, 0, 0],
            [0, 0, 1, 0, 0, 0, 0, 0],
            [0, 0, 0, 1, 0, 0, 0, 0],
            [0, 0, 0, 0, 1, 0, 0, 0],
            [0, 0, 0, 0, 0, 0, 1, 0],
            [0, 0, 0, 0, 0, 1, 0, 0],
            [0, 0, 0, 0, 0, 0, 0, 1],
        ]),
        atol=1e-8,
    )

    diagonal_angles = [2, 3, 5, 7, 11, 13, 17, 19]
    assert cirq.has_unitary(cirq.ThreeQubitDiagonalGate(diagonal_angles))
    np.testing.assert_allclose(
        cirq.unitary(cirq.ThreeQubitDiagonalGate(diagonal_angles)),
        np.diag([np.exp(1j * angle) for angle in diagonal_angles]),
        atol=1e-8,
    )
예제 #4
0
def test_diagonal_gate_property():
    assert cirq.ThreeQubitDiagonalGate([2, 3, 5, 7, 0, 0, 0,
                                        1]).diag_angles_radians == ((2, 3, 5,
                                                                     7, 0, 0,
                                                                     0, 1))
예제 #5
0
import sympy

import cirq


@pytest.mark.parametrize('eigen_gate_type', [cirq.CCXPowGate, cirq.CCZPowGate])
def test_eigen_gates_consistent_protocols(eigen_gate_type):
    cirq.testing.assert_eigengate_implements_consistent_protocols(
        eigen_gate_type)


@pytest.mark.parametrize(
    'gate',
    (
        (cirq.CSWAP),
        (cirq.ThreeQubitDiagonalGate([2, 3, 5, 7, 11, 13, 17, 19])),
        (cirq.ThreeQubitDiagonalGate([0, 0, 0, 0, 0, 0, 0, 0])),
        (cirq.CCX),
        (cirq.CCZ),
    ),
)
def test_consistent_protocols(gate):
    cirq.testing.assert_implements_consistent_protocols(gate)


def test_init():
    assert (cirq.CCZ**0.5).exponent == 0.5
    assert (cirq.CCZ**0.25).exponent == 0.25
    assert (cirq.CCX**0.5).exponent == 0.5
    assert (cirq.CCX**0.25).exponent == 0.25
예제 #6
0
def test_cirq_qsim_all_supported_gates():
    q0 = cirq.GridQubit(1, 1)
    q1 = cirq.GridQubit(1, 0)
    q2 = cirq.GridQubit(0, 1)
    q3 = cirq.GridQubit(0, 0)

    circuit = cirq.Circuit(
        cirq.Moment(
            cirq.H(q0),
            cirq.H(q1),
            cirq.H(q2),
            cirq.H(q3),
        ),
        cirq.Moment(
            cirq.T(q0),
            cirq.T(q1),
            cirq.T(q2),
            cirq.T(q3),
        ),
        cirq.Moment(
            cirq.CZPowGate(exponent=0.7, global_shift=0.2)(q0, q1),
            cirq.CXPowGate(exponent=1.2, global_shift=0.4)(q2, q3),
        ),
        cirq.Moment(
            cirq.XPowGate(exponent=0.3, global_shift=1.1)(q0),
            cirq.YPowGate(exponent=0.4, global_shift=1)(q1),
            cirq.ZPowGate(exponent=0.5, global_shift=0.9)(q2),
            cirq.HPowGate(exponent=0.6, global_shift=0.8)(q3),
        ),
        cirq.Moment(
            cirq.CX(q0, q2),
            cirq.CZ(q1, q3),
        ),
        cirq.Moment(
            cirq.X(q0),
            cirq.Y(q1),
            cirq.Z(q2),
            cirq.S(q3),
        ),
        cirq.Moment(
            cirq.XXPowGate(exponent=0.4, global_shift=0.7)(q0, q1),
            cirq.YYPowGate(exponent=0.8, global_shift=0.5)(q2, q3),
        ),
        cirq.Moment(cirq.I(q0), cirq.I(q1), cirq.IdentityGate(2)(q2, q3)),
        cirq.Moment(
            cirq.rx(0.7)(q0),
            cirq.ry(0.2)(q1),
            cirq.rz(0.4)(q2),
            cirq.PhasedXPowGate(phase_exponent=0.8, exponent=0.6, global_shift=0.3)(q3),
        ),
        cirq.Moment(
            cirq.ZZPowGate(exponent=0.3, global_shift=1.3)(q0, q2),
            cirq.ISwapPowGate(exponent=0.6, global_shift=1.2)(q1, q3),
        ),
        cirq.Moment(
            cirq.XPowGate(exponent=0.1, global_shift=0.9)(q0),
            cirq.YPowGate(exponent=0.2, global_shift=1)(q1),
            cirq.ZPowGate(exponent=0.3, global_shift=1.1)(q2),
            cirq.HPowGate(exponent=0.4, global_shift=1.2)(q3),
        ),
        cirq.Moment(
            cirq.SwapPowGate(exponent=0.2, global_shift=0.9)(q0, q1),
            cirq.PhasedISwapPowGate(phase_exponent=0.8, exponent=0.6)(q2, q3),
        ),
        cirq.Moment(
            cirq.PhasedXZGate(x_exponent=0.2, z_exponent=0.3, axis_phase_exponent=1.4)(
                q0
            ),
            cirq.T(q1),
            cirq.H(q2),
            cirq.S(q3),
        ),
        cirq.Moment(
            cirq.SWAP(q0, q2),
            cirq.XX(q1, q3),
        ),
        cirq.Moment(
            cirq.rx(0.8)(q0),
            cirq.ry(0.9)(q1),
            cirq.rz(1.2)(q2),
            cirq.T(q3),
        ),
        cirq.Moment(
            cirq.YY(q0, q1),
            cirq.ISWAP(q2, q3),
        ),
        cirq.Moment(
            cirq.T(q0),
            cirq.Z(q1),
            cirq.Y(q2),
            cirq.X(q3),
        ),
        cirq.Moment(
            cirq.FSimGate(0.3, 1.7)(q0, q2),
            cirq.ZZ(q1, q3),
        ),
        cirq.Moment(
            cirq.ry(1.3)(q0),
            cirq.rz(0.4)(q1),
            cirq.rx(0.7)(q2),
            cirq.S(q3),
        ),
        cirq.Moment(
            cirq.IdentityGate(4).on(q0, q1, q2, q3),
        ),
        cirq.Moment(
            cirq.CCZPowGate(exponent=0.7, global_shift=0.3)(q2, q0, q1),
        ),
        cirq.Moment(
            cirq.CCXPowGate(exponent=0.4, global_shift=0.6)(q3, q1, q0).controlled_by(
                q2, control_values=[0]
            ),
        ),
        cirq.Moment(
            cirq.rx(0.3)(q0),
            cirq.ry(0.5)(q1),
            cirq.rz(0.7)(q2),
            cirq.rx(0.9)(q3),
        ),
        cirq.Moment(
            cirq.TwoQubitDiagonalGate([0.1, 0.2, 0.3, 0.4])(q0, q1),
        ),
        cirq.Moment(
            cirq.ThreeQubitDiagonalGate([0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.2, 1.3])(
                q1, q2, q3
            ),
        ),
        cirq.Moment(
            cirq.CSwapGate()(q0, q3, q1),
        ),
        cirq.Moment(
            cirq.rz(0.6)(q0),
            cirq.rx(0.7)(q1),
            cirq.ry(0.8)(q2),
            cirq.rz(0.9)(q3),
        ),
        cirq.Moment(
            cirq.TOFFOLI(q3, q2, q0),
        ),
        cirq.Moment(
            cirq.FREDKIN(q1, q3, q2),
        ),
        cirq.Moment(
            cirq.MatrixGate(
                np.array(
                    [
                        [0, -0.5 - 0.5j, -0.5 - 0.5j, 0],
                        [0.5 - 0.5j, 0, 0, -0.5 + 0.5j],
                        [0.5 - 0.5j, 0, 0, 0.5 - 0.5j],
                        [0, -0.5 - 0.5j, 0.5 + 0.5j, 0],
                    ]
                )
            )(q0, q1),
            cirq.MatrixGate(
                np.array(
                    [
                        [0.5 - 0.5j, 0, 0, -0.5 + 0.5j],
                        [0, 0.5 - 0.5j, -0.5 + 0.5j, 0],
                        [0, -0.5 + 0.5j, -0.5 + 0.5j, 0],
                        [0.5 - 0.5j, 0, 0, 0.5 - 0.5j],
                    ]
                )
            )(q2, q3),
        ),
        cirq.Moment(
            cirq.MatrixGate(np.array([[1, 0], [0, 1j]]))(q0),
            cirq.MatrixGate(np.array([[0, -1j], [1j, 0]]))(q1),
            cirq.MatrixGate(np.array([[0, 1], [1, 0]]))(q2),
            cirq.MatrixGate(np.array([[1, 0], [0, -1]]))(q3),
        ),
        cirq.Moment(
            cirq.riswap(0.7)(q0, q1),
            cirq.givens(1.2)(q2, q3),
        ),
        cirq.Moment(
            cirq.H(q0),
            cirq.H(q1),
            cirq.H(q2),
            cirq.H(q3),
        ),
    )

    simulator = cirq.Simulator()
    cirq_result = simulator.simulate(circuit)

    qsim_simulator = qsimcirq.QSimSimulator()
    qsim_result = qsim_simulator.simulate(circuit)

    assert cirq.linalg.allclose_up_to_global_phase(
        qsim_result.state_vector(), cirq_result.state_vector()
    )
예제 #7
0
import cirq


@pytest.mark.parametrize('eigen_gate_type', [cirq.CCXPowGate, cirq.CCZPowGate])
def test_eigen_gates_consistent_protocols(eigen_gate_type):
    cirq.testing.assert_eigengate_implements_consistent_protocols(
        eigen_gate_type, ignoring_global_phase=True
    )


@pytest.mark.parametrize(
    'gate,ignoring_global_phase',
    (
        (cirq.CSWAP, False),
        (cirq.ThreeQubitDiagonalGate([2, 3, 5, 7, 11, 13, 17, 19]), True),
        (cirq.ThreeQubitDiagonalGate([0, 0, 0, 0, 0, 0, 0, 0]), True),
        (cirq.CCX, False),
        (cirq.CCZ, False),
    ),
)
def test_consistent_protocols(gate, ignoring_global_phase):
    cirq.testing.assert_implements_consistent_protocols(
        gate, ignoring_global_phase=ignoring_global_phase
    )


def test_init():
    assert (cirq.CCZ**0.5).exponent == 0.5
    assert (cirq.CCZ**0.25).exponent == 0.25
    assert (cirq.CCX**0.5).exponent == 0.5