예제 #1
0
    def __init__(self, params):
        # prepare config structure for the test dataset
        self.image_size = params.pop("image_size")
        self.dataset = params.pop("dataset")
        self.transforms = initialize_transforms(params.pop("transforms"), params.pop("mean_std"))

        if isinstance(self.dataset, dict):
            # Tsv dataset files
            assert self.dataset.keys() == {"name", "queries", "db", "imgdir"}
            imgdir = self.dataset['imgdir']
            with initialize_file_reader(self.dataset['db'], keys=["identifier"]) as reader:
                data = reader.get()
                self.images = [path_join(imgdir, x) for x in data["identifier"]]
                mapping = {x: i for i, x in enumerate(data["identifier"])}
            with initialize_file_reader(self.dataset['queries'], keys=["query", "bbx", "ok", "junk"]) as reader:
                data = reader.get()
                self.qimages = [path_join(imgdir, x) for x in data["query"]]
                self.bbxs = [tuple(x) if x else None for x in data["bbx"]]
                self.gnd = [{'ok': [mapping[x] for x in ok], 'junk': [mapping[x] for x in junk]} \
                                for ok, junk in zip(data["ok"], data["junk"])]
            self.dataset = self.dataset['name']
        else:
            # Official cirtorch files
            cfg = configdataset(self.dataset, os.path.join(get_data_root(), 'test'))
            self.images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
            self.qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
            self.bbxs = [tuple(cfg['gnd'][i]['bbx']) if cfg['gnd'][i]['bbx'] else None for i in range(cfg['nq'])]
            self.gnd = cfg['gnd']

        assert not params, params.keys()
예제 #2
0
def test(datasets, net):
    print(">> Evaluating network on test datasets...")
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta["mean"],
                                     std=net.meta["std"])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    # Lw = None
    Lw = net.meta["Lw"]["retrieval-SfM-120k"]["ss"]

    # evaluate on test datasets
    # datasets = args.test_datasets.split(",")
    for dataset in datasets:
        start = time.time()

        print(">> {}: Extracting...".format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), "test"))
        images = [cfg["im_fname"](cfg, i) for i in range(cfg["n"])]
        qimages = [cfg["qim_fname"](cfg, i) for i in range(cfg["nq"])]
        bbxs = [tuple(cfg["gnd"][i]["bbx"]) for i in range(cfg["nq"])]

        # extract database and query vectors
        print(">> {}: database images...".format(dataset))
        vecs = extract_vectors(net, images, image_size, transform)
        print(">> {}: query images...".format(dataset))
        qvecs = extract_vectors(net, qimages, image_size, transform, bbxs)

        print(">> {}: Evaluating...".format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg["gnd"])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw["m"], Lw["P"])
            qvecs_lw = whitenapply(qvecs, Lw["m"], Lw["P"])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + " + whiten", ranks, cfg["gnd"])

        print(">> {}: elapsed time: {}".format(dataset,
                                               htime(time.time() - start)))
예제 #3
0
def query_ivf(asmk, dataset, desc, globals, logger):
    """The last step of asmk method - querying the ivf"""
    metadata, _images, ranks, _scores = asmk.query_ivf(desc['qvecs'],
                                                       desc['qimids'])
    logger.debug(
        f"Average query time (quant+aggr+search) is {metadata['query_avg_time']:.3f}s"
    )
    gnd = configdataset(dataset, f"{globals['root_path']}/test/")['gnd']
    compute_map_and_print(dataset, ranks.T, gnd)
예제 #4
0
def load_dataset(dataset, data_root=''):
    """Return tuple (image list, query list, bounding boxes, gnd dictionary)"""

    if isinstance(dataset, dict):
        root = os.path.join(data_root, dataset['image_root'])
        images, qimages = None, None
        if dataset['database_list'] is not None:
            images = [path_join(root, x.strip("\n")) for x in open(dataset['database_list']).readlines()]
        if dataset['query_list'] is not None:
            qimages = [path_join(root, x.strip("\n")) for x in open(dataset['query_list']).readlines()]
        bbxs = None
        gnd = None

    elif dataset == 'train':
        training_set = 'retrieval-SfM-120k'
        db_root = os.path.join(data_root, 'train', training_set)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}.pkl'.format(training_set))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)['train']
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]
        qimages = []
        bbxs = None
        gnd = None

    elif dataset == 'val_eccv20':
        db_root = os.path.join(data_root, 'train', 'retrieval-SfM-120k')
        fn_val_proper = db_root+'/retrieval-SfM-120k-val-eccv2020.pkl' # pos are all with #inl >=3 & <= 10
        with open(fn_val_proper, 'rb') as f:
            db = pickle.load(f)
        ims_root = os.path.join(db_root, 'ims')
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]
        gnd = db['gnd']
        qidx = db['qidx']
        qimages = [images[x] for x in qidx]
        bbxs = None

    elif "/" in dataset:
        with open(dataset, 'rb') as handle:
            db = pickle.load(handle)
        images, qimages, bbxs, gnd = db['imlist'], db['qimlist'], None, db['gnd']

    else:
        cfg = configdataset(dataset, os.path.join(data_root, 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        if 'bbx' in cfg['gnd'][0].keys():
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        else:
            bbxs = None
        gnd = cfg['gnd']

    return images, qimages, bbxs, gnd
예제 #5
0
def gen_query_bbx_img():
    datasets = ['oxford5k', 'paris6k', 'roxford5k', 'rparis6k']
    for dataset in datasets:
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        width = 5

        for i in range(len(qimages)):
            im = Image.open(qimages[i])
            draw = ImageDraw.Draw(im)
            (x0, y0, x1, y1) = bbxs[i]
            for j in range(width):
                draw.rectangle([x0-j, y0-j, x1+j, y1+j], outline='yellow')
            im.save('_bbx.jpg'.join(qimages[i].split('.jpg')))

        print("{} qurery_bbx generate ok".format(dataset))
예제 #6
0
파일: data_helpers.py 프로젝트: MING410/how
def load_dataset(dataset, data_root=''):
    """Return tuple (image list, query list, bounding boxes, gnd dictionary)"""

    if dataset == 'mitsubishi_dataset':
        global images
        global qimages
        global bbxs
        global gnd
        cfg = configdataset()
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
               
        if 'bbx' in cfg['gnd'][0].keys():
            #cfg['gnd']=[{'bbx':'','xx':''},{},...{}]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        else:
            bbxs = None
        gnd=cfg['gnd']
    return images, qimages, bbxs, gnd
def eval_datasets(model,
                  datasets=('oxford5k', 'paris6k', 'roxford5k', 'rparis6k'),
                  ms=False,
                  tta_gem_p=1.0,
                  logger=None):
    model = model.eval()

    data_root = get_data_root()
    scales = [1 / 2**(1 / 2), 1.0, 2**(1 / 2)] if ms else [1.0]
    results = dict()

    for dataset in datasets:

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(data_root, 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        tqdm_desc = cfg['dataset']

        db_feats = extract_vectors(model,
                                   images=images,
                                   bbxs=None,
                                   scales=scales,
                                   tta_gem_p=tta_gem_p,
                                   tqdm_desc=tqdm_desc)
        query_feats = extract_vectors(model,
                                      images=qimages,
                                      bbxs=bbxs,
                                      scales=scales,
                                      tta_gem_p=tta_gem_p,
                                      tqdm_desc=tqdm_desc)

        scores = np.dot(db_feats, query_feats.T)
        ranks = np.argsort(-scores, axis=0)
        results[dataset] = compute_map_and_print(dataset,
                                                 ranks,
                                                 cfg['gnd'],
                                                 kappas=[1, 5, 10],
                                                 logger=logger)

    return results
예제 #8
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network
    # pretrained networks (downloaded automatically)
    print(">> Loading network:\n>>>> '{}'".format(args.network))
    state = load_url(PRETRAINED[args.network],
                     model_dir=os.path.join(get_data_root(), 'networks'))
    # parsing net params from meta
    # architecture, pooling, mean, std required
    # the rest has default values, in case that is doesnt exist
    net_params = {}
    net_params['architecture'] = state['meta']['architecture']
    net_params['pooling'] = state['meta']['pooling']
    net_params['local_whitening'] = state['meta'].get('local_whitening', False)
    net_params['regional'] = state['meta'].get('regional', False)
    net_params['whitening'] = state['meta'].get('whitening', False)
    net_params['mean'] = state['meta']['mean']
    net_params['std'] = state['meta']['std']
    net_params['pretrained'] = False
    # network initialization
    net = init_network(net_params)
    net.load_state_dict(state['state_dict'])

    print(">>>> loaded network: ")
    print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    print(">>>> Evaluating scales: {}".format(ms))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                bbxs=bbxs,
                                ms=ms)

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)

        top_k = 100
        ranks_fnames_qs = []
        for q_id in range(len(cfg["qimlist"])):
            ranks_q = list(ranks[:top_k, q_id])
            ranks_fname_per_q = []
            for img_id in ranks_q:
                ranks_fname_per_q.append(cfg["imlist"][img_id])
            ranks_fnames_qs.append(ranks_fname_per_q)

        compute_map_and_print(dataset, ranks, cfg['gnd'])
        compute_map_and_print_top_k(dataset, ranks_fnames_qs, cfg['gnd'],
                                    cfg["imlist"])

        sys.exit()
        with open(dataset + "_gl18_tl_resnet101_gem_w_m.pkl", "wb") as f:
            data = {"ranks": ranks, "db_images": images, "q_images": qimages}
            pickle.dump(data, f)

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
예제 #9
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.whitening))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.whitening)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.whitening))
        wvecs = extract_vectors(net,
                                images,
                                args.image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(args.whitening))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == 'reco':
            images, qimages = landmark_recognition_dataset()
            bbxs = [None for x in qimages]

        elif dataset == 'retr':
            images, _ = landmark_retrieval_dataset()
            qimages = []
            bbxs = [None for x in qimages]

        else:
            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        with open('%s_fnames.pkl' % dataset, 'wb') as f:
            pickle.dump([images, qimages], f)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        vecs = vecs.numpy()
        print('>> saving')
        np.save('{}_vecs.npy'.format(dataset), vecs)

        if len(qimages) > 0:
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    bbxs=bbxs,
                                    ms=ms,
                                    msp=msp)
            qvecs = qvecs.numpy()
            np.save('{}_qvecs.npy'.format(dataset), qvecs)

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # TODO

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
    print(net.meta_repr())

# moving network to gpu and eval mode
net.cuda()
net.eval()

# set up the transform
normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std'])
transform = transforms.Compose([transforms.ToTensor(), normalize])

# %%
start = time.time()
print('>> {}: Extracting...'.format(dataset))

# prepare config structure for the test dataset
cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
# bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
print('>> not use bbxs...')
bbxs = None

# %%
for param in params:
    for image_size in param['image_size']:
        # setting up the multi-scale parameters
        print(">> image size: {}".format(image_size))
        if len(param['ms']) > 1 and net.meta['pooling'] == 'gem' \
                and not net.meta['regional'] and not net.meta['whitening']:
            msp = net.pool.p.item()
            print(">> Set-up multiscale:")
예제 #11
0
def main():
    print(">> Retrieval evaluation of attacks\n")

    args = parser.parse_args()

    # check if unknown dataset
    if args.dataset not in datasets_names:
        raise ValueError('Unsupported or unknown dataset: {}!'.format(
            args.dataset))

    # check if test dataset are downloaded and download if they are not
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # parse off-the-shelf parameters
    offtheshelf = args.network_offtheshelf.split('-')
    net_params = {
        'architecture': offtheshelf[0],
        'pooling': offtheshelf[1],
        'local_whitening': False,
        'regional': False,
        'whitening': False,
        'pretrained': True
    }

    # load off-the-shelf network
    print(">> Loading off-the-shelf network: '{}'".format(
        args.network_offtheshelf))
    net = init_network(net_params)
    # print(">>>> loaded network: \n'{}'".format(net.meta_repr()))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # evaluate on test dataset
    dataset = args.dataset
    print('>> {}: Extracting...'.format(dataset))

    # prepare config structure for the test dataset
    cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
    cfg.update({'qext_a': args.ext_attack})
    cfg.update({'dir_data_a': args.dir_attack})
    cfg.update({'dir_images_a': cfg['dir_data_a']})
    cfg.update({'qim_fname_a': config_qimname_a})

    # reduce number of queries for holidays and copydays
    if dataset.startswith('holidays') or dataset.startswith('copydays'):
        cfg['nq'] = 50
        cfg['gnd'] = cfg['gnd'][:cfg['nq']]

    images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
    qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
    qimages_a = [cfg['qim_fname_a'](cfg, i) for i in range(cfg['nq'])]

    try:
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
    except:
        bbxs = None  # for holidays and copydays

    # extract descriptors and cache or load cached ones
    print('>> {}: database images...'.format(dataset))
    network_fn = args.network_offtheshelf
    if args.dir_cache is not None:
        vecs_fn = os.path.join(
            args.dir_cache,
            '{}_{}_{}_{}_vecs.pth'.format(dataset, network_fn, args.image_size,
                                          args.image_resize))
    if os.path.isfile(vecs_fn):
        vecs = torch.load(vecs_fn)
        print('>> loaded cached descriptors from {}'.format(vecs_fn))
    else:
        vecs = extract_vectors_a(net, images, args.image_size,
                                 args.image_resize, transform)
        torch.save(vecs, vecs_fn)

    print('>> {}: standard query images...'.format(dataset))
    qvecs = extract_vectors_a(net,
                              qimages,
                              args.image_size,
                              args.image_resize,
                              transform,
                              bbxs=bbxs)
    print('>> {}: attack query images...'.format(dataset))
    qvecs_a = extract_vectors_a(net, qimages_a, args.image_size,
                                args.image_resize, transform)

    print('>> {}: evaluating for image resolution {}'.format(
        dataset, args.image_resize))
    # convert to numpy
    vecs = vecs.numpy()
    qvecs = qvecs.numpy()
    qvecs_a = qvecs_a.numpy()

    qip = (qvecs * qvecs_a).sum(axis=0)
    qip_mean, qip_std = qip.mean(), qip.std()
    print('>> {}: inner product (target,attack) mean: {:.3f}, std: {:.3f}'.
          format(dataset, qip_mean, qip_std))

    # search, rank, and print
    scores = np.dot(vecs.T, qvecs)
    ranks = np.argsort(-scores, axis=0)
    maps, mprs, aps = compute_map_and_print(dataset, ranks, cfg['gnd'])

    # attack search, rank, and print
    scores = np.dot(vecs.T, qvecs_a)
    ranks = np.argsort(-scores, axis=0)
    maps_a, mprs_a, aps_a = compute_map_and_print(
        dataset + ' attack ({})'.format(args.ext_attack), ranks, cfg['gnd'])

    if dataset.startswith('roxford5k') or dataset.startswith('rparis6k'):
        r1, r2, r3 = 100 * maps[1], 100 * maps_a[1], 100 * (
            maps_a[1] - maps[1])  # medium protocol
    else:
        r1, r2, r3 = 100 * maps[0], 100 * maps_a[0], 100 * (maps_a[0] -
                                                            maps[0])

    print(
        '\n*** Summary ***\n attack: {}\n test: {}-{}-{} \n  mean ip (target,attack): {:.3f}\n  mAP: org {:.2f} att {:.2f} dif {:.2f}\n'
        .format(
            args.dir_attack.split('/')[-2], dataset, args.network_offtheshelf,
            args.image_resize, qip_mean, r1, r2, r3))

    if args.log is not None:
        with open(args.log, 'a') as f:
            f.write(
                '\n attack: {}\n test: {}-{}-{} \n  mean ip (target,attack): {:.3f}\n  mAP: org {:.2f} att {:.2f} dif {:.2f}\n\n'
                .format(
                    args.dir_attack.split('/')[-2], dataset,
                    args.network_offtheshelf, args.image_resize, qip_mean, r1,
                    r2, r3))
예제 #12
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    # for dataset in args.datasets.split(','):
    #     if dataset not in datasets_names:
    #         raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    # download_train(get_data_root())
    # download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path

    #datasets = args.datasets.split(',')
    for dataset in datasets_names:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join('/data', 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]

        global_feature_dict, gloabal_feature_size = build_global_feature_dict(
            '/home/ubuntu/DELG/extract/roxf5k.delf.global', 'global_features')

        # # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_feature(global_feature_dict, images,
                               gloabal_feature_size)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_feature(global_feature_dict, qimages,
                                gloabal_feature_size)
        print('>> {}: Evaluating...'.format(dataset))

        # search, rank, and print
        # using cosine similarity of two vectors
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)

        compute_map_and_print(dataset, ranks, cfg['gnd'])

        feature_location, feature_descriptor = build_local_feature_dict(
            '/home/ubuntu/DELG/extract/roxf5k.delf.local')
        new_ranks = []  #np.empty_like(ranks)
        # for i, qimage in enumerate(qimages):
        #     new_ranks[:, i] = RerankByGeometricVerification(i, ranks[:, i], scores[:, i], qimage,
        #                                       images, feature_location,
        #                                       feature_descriptor, [])

        from functools import partial
        re_rank_func = partial(RerankByGeometricVerification,
                               input_ranks=ranks,
                               initial_scores=scores,
                               query_name=qimages,
                               index_names=images,
                               feature_location=feature_location,
                               feature_descriptor=feature_descriptor,
                               junk_ids=[])

        new_ranks = p_map(re_rank_func, range(len(qimages)))

        new_ranks = np.concatenate(new_ranks, axis=0)

        compute_map_and_print(dataset, new_ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
예제 #13
0
def test(datasets, net):
    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.test_whiten:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.test_whiten))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.test_whiten))
        wvecs = extract_vectors(net,
                                images,
                                image_size,
                                transform,
                                print_freq=10,
                                batchsize=20)  # implemented with torch.no_grad

        # learning whitening
        print('>> {}: Learning...'.format(args.test_whiten))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.test_whiten,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        if dataset == 'cdvs_test_retrieval':
            bbxs = None
        else:
            bbxs = None

        print('>> {}: database images...'.format(dataset))
        if args.pool == 'gem':
            ms = [1, 1 / 2**(1 / 2), 1 / 2]
        else:
            ms = [1]
        if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
                'regional'] and not net.meta['whitening']:
            msp = net.pool.p.item()
            print(">> Set-up multiscale:")
            print(">>>> ms: {}".format(ms))
            print(">>>> msp: {}".format(msp))
        else:
            msp = 1
        vecs = extract_vectors(net,
                               images,
                               image_size,
                               transform,
                               bbxs,
                               ms=ms,
                               msp=msp,
                               print_freq=1000,
                               batchsize=1)  # implemented with torch.no_grad
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                image_size,
                                transform,
                                bbxs,
                                ms=ms,
                                msp=msp,
                                print_freq=1000,
                                batchsize=1)  # implemented with torch.no_grad

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        if dataset == 'cdvs_test_retrieval':
            compute_map_and_print(dataset, ranks, cfg['gnd_id'])
        else:
            compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
예제 #14
0
def test(datasets, net, wandb_enabled=False, epoch=-1):
    
    global global_step

    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.test_whiten:
        start = time.time()

        print('>> {}: Learning whitening...'.format(args.test_whiten))

        # loading db
        db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(args.test_whiten))
        wvecs = extract_vectors(net, images, image_size, transform)  # implemented with torch.no_grad
        
        # learning whitening 
        print('>> {}: Learning...'.format(args.test_whiten))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.test_whiten, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, image_size, transform)  # implemented with torch.no_grad
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, image_size, transform, bbxs)  # implemented with torch.no_grad
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step)
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'], wandb_enabled=wandb_enabled, epoch=epoch, global_step=global_step)
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError('Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    # download_train(get_data_root())
    # download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get('local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False
        net_params['multi_layer_cat'] = state['meta']['multi_layer_cat']

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])
        
        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']
        
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        
        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    print(">> image size: {}".format(args.image_size))
    ms = list(eval(args.multiscale))
    if len(ms)>1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))            
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:
            
            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
            
            if len(ms)>1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))
                
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
                
                # learning whitening 
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets: 
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        print('>> not use bbxs...')
        bbxs = None

        # key_url_list = ParseData(os.path.join(get_data_root(), 'index.csv'))
        # index_image_path = os.path.join(get_data_root(), 'resize_index_image')
        # images = [os.path.join(index_image_path, key_url_list[i][0]) for i in range(len(key_url_list))]
        # key_url_list = ParseData(os.path.join(get_data_root(), 'test.csv'))
        # test_image_path = os.path.join(get_data_root(), 'resize_test_image')
        # qimages = [os.path.join(test_image_path, key_url_list[i][0]) for i in range(len(key_url_list))]
        # # bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # csvfile = open(os.path.join(get_data_root(), 'index_clear.csv'), 'r')
        # csvreader = csv.reader(csvfile)
        # images = [line[:1][0] for line in csvreader]
        #
        # csvfile = open(os.path.join(get_data_root(), 'test_clear.csv'), 'r')
        # csvreader = csv.reader(csvfile)
        # qimages = [line[:1][0] for line in csvreader]

        # bbxs = None
        
        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        # vecs = torch.randn(2048, 5063)
        # vecs = torch.randn(2048, 4993)

        # hxq modified
        # bbxs = None
        # print('>> set no bbxs...')
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)

        # hxq modified, test add features map for retrieval
        # vecs = [vecs[i].numpy() for i in range(len(vecs))]
        # qvecs_temp = np.zeros((qvecs[0].shape[0], len(qvecs)))
        # for i in range(len(qvecs)):
        #     qvecs_temp[:, i] = qvecs[i][:, 0].numpy()
        # qvecs = qvecs_temp
        #
        # scores = np.zeros((len(vecs), qvecs.shape[-1]))
        # for i in range(len(vecs)):
        #     scores[i, :] = np.amax(np.dot(vecs[i].T, qvecs), 0)

        ranks = np.argsort(-scores, axis=0)
        mismatched_info = compute_map_and_print(dataset, ranks, cfg['gnd'], kappas=[1, 5, 10, 100])

        # hxq added
        show_false_img = False
        if show_false_img == True:
            print('>> Save mismatched image tuple...')
            for info in mismatched_info:
                mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs)
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            mismatched_info = compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

            # hxq added
            # show_false_img = False
            if show_false_img == True:
                print('>> Save mismatched image tuple...')
                for info in mismatched_info:
                    mismatched_img_show_save(info, qimages, images, args, bbxs=bbxs)
        
        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
예제 #16
0
def main():
    #def process(network_path, datasets='oxford5k,paris6k', whitening=None, image_size=1024, multiscale = '[1]', query=None):
    args = parser.parse_args()
    #args.query = None
    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    #os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    #net.cuda()
    #net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None
            print(whiten_fn)
            return
            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    # query type

    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))

        #for i in cfg: print(i)
        #print(cfg['gnd'][0]['bbx'])
        #return

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        feas_dir = os.path.join(cfg['dir_data'], 'features')
        if not os.path.isdir(feas_dir):
            os.mkdir(feas_dir)
        feas_sv = os.path.join(
            feas_dir, dataset + '_' + args.network_path + '_features.pkl')
        if not os.path.isfile(feas_sv):
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            vecs = extract_vectors(net,
                                   images,
                                   args.image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            with open(feas_sv, 'wb') as f:
                pickle.dump(vecs, f)
        else:
            with open(feas_sv, 'rb') as f:
                vecs = pickle.load(f)

        print('>> {}: query images...'.format(dataset))
        if args.query is not None:
            qimages = [args.query]
            qvecs = extract_vectors(net,
                                    qimages,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)
        else:
            qfeas_dir = feas_dir
            qfeas_sv = os.path.join(
                qfeas_dir,
                dataset + '_' + args.network_path + '_qfeatures.pkl')
            if not os.path.isfile(qfeas_sv):
                qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
                try:
                    bbxs = [
                        tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])
                    ]
                except:
                    bbxs = None
                qvecs = extract_vectors(net,
                                        qimages,
                                        args.image_size,
                                        transform,
                                        bbxs=bbxs,
                                        ms=ms,
                                        msp=msp)
                with open(qfeas_sv, 'wb') as f:
                    pickle.dump(qvecs, f)
            else:
                with open(qfeas_sv, 'rb') as f:
                    qvecs = pickle.load(f)

        print('>> {}: Evaluating...'.format(dataset))
        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        #qvecs = qvecs[:, 0].reshape(-1, 1)
        #args.query = True
        # search, rank, and print
        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranksw = np.argsort(-scores, axis=0)
            if args.query is None:
                #compute_map_and_print(dataset + ' + whiten', ranksw, cfg['gnd'])
                compute_map_and_print1(dataset + ' + whiten', ranksw,
                                       cfg['gnd'])

                scores = np.dot(vecs.T, qvecs)
                ranks = np.argsort(-scores, axis=0)
                # compute_map_and_print(dataset, ranks, cfg['gnd'])
                compute_map_and_print1(dataset, ranks, cfg['gnd'])
            else:
                a = []
                for i in ranksw:
                    a.append(
                        os.path.join(cfg['dir_images'], cfg['imlist'][i[0]]) +
                        cfg['ext'])
                print(a[:10])
                result = cfg['dir_data'] + '_result'
                with open(result + '.pkl', 'wb') as f:
                    pickle.dump(a[:10], f)
        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
예제 #17
0
def test(datasets, net, noise, image_size):
    global base
    print(">> Evaluating network on test datasets...")

    net.cuda()
    net.eval()
    normalize = transforms.Normalize(mean=net.meta["mean"],
                                     std=net.meta["std"])

    def add_noise(img):
        n = noise
        n = F.interpolate(n.unsqueeze(0),
                          mode=MODE,
                          size=tuple(img.shape[-2:]),
                          align_corners=True).squeeze()
        return torch.clamp(img + n, 0, 1)

    transform_base = transforms.Compose([transforms.ToTensor(), normalize])
    transform_query = transforms.Compose(
        [transforms.ToTensor(),
         transforms.Lambda(add_noise), normalize])

    if "Lw" in net.meta:
        Lw = net.meta["Lw"]["retrieval-SfM-120k"]["ss"]
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.test_datasets.split(",")
    attack_result = {}
    for dataset in datasets:
        start = time.time()

        print(">> {}: Extracting...".format(dataset))

        cfg = configdataset(dataset, os.path.join(get_data_root(), "test"))
        images = [cfg["im_fname"](cfg, i) for i in range(cfg["n"])]
        qimages = [cfg["qim_fname"](cfg, i) for i in range(cfg["nq"])]
        bbxs = [tuple(cfg["gnd"][i]["bbx"]) for i in range(cfg["nq"])]

        # extract database and query vectors
        print(">> {}: database images...".format(dataset))
        with torch.no_grad():
            if dataset in base and str(image_size) in base[dataset]:
                vecs = base[dataset][str(image_size)]
            else:
                vecs = extract_vectors(net, images, image_size, transform_base)
                if dataset not in base:
                    base[dataset] = {}
                base[dataset][str(image_size)] = vecs
                fname = args.network_path.replace("/", "_") + ".pkl"
                with open(f"base/{fname}", "wb") as f:
                    pickle.dump(base, f)
            print(">> {}: query images...".format(dataset))
            qvecs = extract_vectors(net, qimages, image_size, transform_query,
                                    bbxs)

        print(">> {}: Evaluating...".format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # whiten the vectors
        vecs_lw = whitenapply(vecs, Lw["m"], Lw["P"])
        qvecs_lw = whitenapply(qvecs, Lw["m"], Lw["P"])

        # search, rank, and print
        scores = np.dot(vecs_lw.T, qvecs_lw)
        ranks = np.argsort(-scores, axis=0)
        r = compute_map_and_print(dataset + " + whiten", ranks, cfg["gnd"])
        attack_result[dataset] = r

        print(">> {}: elapsed time: {}".format(dataset,
                                               htime(time.time() - start)))
    return inv_gfr(
        attack_result,
        baseline_result[net.meta["architecture"]][net.meta["pooling"]])
예제 #18
0
net_params = {'local_whitening':False,'regional':False,'whitening':False,'pretrained':True} # default cir network params
train_networks = []
for s in args.modellist.split("+"):
    net_params['architecture'] = s.split("-")[0] 
    train_networks.append(init_network(net_params))
    if mode == 'global': train_networks[-1].poolattack = s.split("-")[1:] 
for n in train_networks: n.eval(); n.cuda(); 

# output name
if mode == 'global': exp_name = dataset+"_"+("+".join([n.meta['architecture']+"-"+"-".join(n.poolattack) for n in train_networks]))
else: exp_name =  dataset+"_"+("+".join([n.meta['architecture']+"-"+mode for n in train_networks]))
if len(variant): variant= "+"+variant
exp_name+= "+"+str(train_scales).replace(" ","")+"+iter"+str(iters)+"+lr"+str(lr)+"+lam"+str(lam)+"+sigmablur"+str(sigma_blur)+"_"+carrier_fn+variant

# dataset config
cfg = configdataset(dataset, datasets_folder)
if dataset.startswith('holidays') or dataset.startswith('copydays'): cfg['nq'] = 50                                  # hard code holidays and copydays queries to first 50
if 'bbx' in cfg['gnd'][0].keys(): bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]                     # bounding boxes for roxford5k and rparis6k datasets
else: bbxs = None  
im_size = {'roxford5k':1024, 'rparis6k':1024, 'holidays':1024, 'copydays':1024}                            # original image size
scale_factors = [x / im_size[dataset] for x in train_scales]                                                         # compute relative re-scaling factors

# log file
log = open(output_folder+"/log_"+exp_name+".txt", 'a')

# save folder for attacks
if not os.path.exists(output_folder+"/"+exp_name): 
    os.makedirs(output_folder+"/"+exp_name)

# params for rerun if no converge
max_trials, multiply_rate_iters, divide_rate_lr  = 10, 2, 5
예제 #19
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    #download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            state = torch.load(args.network_path)
        net = init_network(model=state['meta']['architecture'],
                           pooling=state['meta']['pooling'],
                           whitening=state['meta']['whitening'],
                           mean=state['meta']['mean'],
                           std=state['meta']['std'],
                           pretrained=False)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        offtheshelf = args.network_offtheshelf.split('-')
        if len(offtheshelf) == 3:
            if offtheshelf[2] == 'whiten':
                offtheshelf_whiten = True
            else:
                raise (RuntimeError(
                    "Incorrect format of the off-the-shelf network. Examples: resnet101-gem | resnet101-gem-whiten"
                ))
        else:
            offtheshelf_whiten = False
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(model=offtheshelf[0],
                           pooling=offtheshelf[1],
                           whitening=offtheshelf_whiten)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            # loading db
            db_root = os.path.join(get_data_root(), 'train', args.whitening)
            ims_root = os.path.join(db_root, 'ims')
            db_fn = os.path.join(db_root,
                                 '{}-whiten.pkl'.format(args.whitening))
            with open(db_fn, 'rb') as f:
                db = pickle.load(f)
            images = [
                cid2filename(db['cids'][i], ims_root)
                for i in range(len(db['cids']))
            ]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net,
                                    images,
                                    args.image_size,
                                    transform,
                                    ms=ms,
                                    msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages,
                                args.image_size,
                                transform,
                                bbxs=bbxs,
                                ms=ms,
                                msp=msp)

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])

        if Lw is not None:
            # whiten the vectors
            vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
예제 #20
0
def main():
    args = parser.parse_args()

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:
        net = load_network(args.network_path)

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:
        net = load_offtheshelf(args.network_offtheshelf)

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if args.multiscale:
        ms = [1, 1./math.sqrt(2), 1./2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))

            if args.multiscale:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            print('>> {}: Learning whitening...'.format(args.whitening))

            if args.whitening == "scores":
                # special logic for scores database
                from score_retrieval.exports import (
                    db,
                    train_images as images,
                )

            else:
                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.test_whiten)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.test_whiten))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

            # extract whitening vectors
            print('>> {}: Extracting...'.format(args.whitening))
            wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)

            # learning whitening
            print('>> {}: Learning...'.format(args.whitening))
            wvecs = wvecs.numpy()
            m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
            Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time()-start)))
    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        if dataset == "scores":
            # Special added logic to handle loading our score dataset
            from score_retrieval.exports import (
                images,
                qimages,
                gnd,
            )

            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, ms=ms, msp=msp)

        else:
            # extract ground truth
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            gnd = cfg['gnd']

            # prepare config structure for the test dataset
            images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
            bbxs = [tuple(gnd[i]['bbx']) for i in range(cfg['nq'])]

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)

        # validation
        print(">> {}: gnd stats: {}, {}, {}".format(
            dataset,
            len(gnd),
            [len(x["ok"]) for x in gnd[10:]],
            [len(x["junk"]) for x in gnd[10:]],
        ))
        print(">> {}: image stats: {}, {}".format(dataset, len(images), len(qimages)))
        assert len(gnd) == len(qimages), (len(gnd), len(qimages))

        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()
        print(">> {}: qvecs.shape: {}".format(dataset, qvecs.shape))

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        ranks = np.argsort(-scores, axis=0)
        print(">> {}: ranks (shape {}) head: {}".format(dataset, ranks.shape, ranks[10:,10:]))
        print(">> {}: gnd head: {}".format(dataset, gnd[5:]))

        # Compute and print metrics
        compute_acc(ranks, gnd, dataset)
        compute_mrr(ranks, gnd, dataset)
        compute_map_and_print(dataset, ranks, gnd)

        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            ranks = np.argsort(-scores, axis=0)
            compute_acc(ranks, gnd, dataset + " + whiten")
            compute_mrr(ranks, gnd, dataset + " + whiten")
            compute_map_and_print(dataset + " + whiten", ranks, gnd)

        print('>> {}: elapsed time: {}'.format(dataset, htime(time.time()-start)))
예제 #21
0
def main():
    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
    using_cdvs = float(args.using_cdvs)
    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path], model_dir=os.path.join(get_data_root(), 'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get('local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta['regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(
        mean=net.meta['mean'],
        std=net.meta['std']
    )
    transform = transforms.Compose([
        transforms.ToTensor(),
        normalize
    ])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train', args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root, '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [cid2filename(db['cids'][i], ims_root) for i in range(len(db['cids']))]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening, htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    result_dir=args.network_path[0:-8]
    epoch_lun=args.network_path[0:-8].split('/')[-1].replace('model_epoch','')
    print(">> Creating directory if it does not exist:\n>> '{}'".format(result_dir))
    if not os.path.exists(result_dir):
        os.makedirs(result_dir)
    for dataset in datasets:
        start = time.time()
        # search, rank, and print
        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        tuple_bbxs_qimlist=None
        tuple_bbxs_imlist=None
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        # extract database and query vectors

        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=tuple_bbxs_qimlist, ms=ms, msp=msp, batchsize=1)
        qvecs = qvecs.numpy()
        qvecs = qvecs.astype(np.float32)
        np.save(os.path.join(result_dir, "{}_qvecs_ep{}_resize.npy".format(dataset,epoch_lun)), qvecs)
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, bbxs=tuple_bbxs_imlist, msp=msp, batchsize=1)
        vecs = vecs.numpy()
        vecs = vecs.astype(np.float32)
        np.save(os.path.join(result_dir, "{}_vecs_ep{}_resize.npy".format(dataset,epoch_lun)), vecs)
        scores = np.dot(vecs.T, qvecs)
        if using_cdvs!=0:
            print('>> {}: cdvs global descriptor loading...'.format(dataset))
            qvecs_global = cfg['qimlist_global']
            vecs_global = cfg['imlist_global']
            scores_global = np.dot(vecs_global, qvecs_global.T)
            scores+=scores_global*using_cdvs
        ranks = np.argsort(-scores, axis=0)
        if args.ir_remove!='0':
            rank_len=10
            rank_re = np.loadtxt(os.path.join(result_dir, '{}_ranks_new_relevent.txt'.format(dataset)))
            ## the max value of rank_len
            MAX_RANK_LEN = int((rank_re.shape[0]) ** 0.5)
            rank_re=rank_re.reshape(MAX_RANK_LEN,MAX_RANK_LEN,rank_re.shape[1])
            for m in range(rank_re.shape[2]):
                for i in range(rank_re.shape[0]):
                    rank_re[i][i][m]=1.0
            quanzhong=[1,0.7,0.4]+[0.1]*(MAX_RANK_LEN-3)
            for m in range(rank_re.shape[2]):
                #if adaption, then change the rank_len to a adaption params according to the rank_re_q, q_aer, cons_n
                if args.ir_adaption:
                    using_local_query=True
                    cons_n = 5
                    q_aer = float(args.ir_adaption)
                    if using_local_query:
                        ## using local feature scores, please don't forget note the query_q belong to deep
                        rank_re_q = np.loadtxt(os.path.join(result_dir, '{}_ranks_new_query.txt'.format(dataset)))
                        query_q = rank_re_q[:, m]
                    else:
                        ## using deep feature scores
                        query_q = scores[ranks[:, m], m]

                    rank_len=0
                    jishu=0
                    for idx in range(min(len(query_q),MAX_RANK_LEN)-cons_n):
                        if jishu<cons_n:
                            if query_q[idx]>q_aer:
                                rank_len=idx+1
                            else:
                                jishu+=1
                        else:
                            break
                max_dim = min(rank_len, MAX_RANK_LEN)
                print (max_dim)
                if max_dim>2:
                    #put the image to the MAX_RANK_LEN2 location if equals max_dim then re rank in the maxdim length
                    list2 = []
                    list_hou = []
                    MAX_RANK_LEN2 = max_dim
                    for i in range(MAX_RANK_LEN2):
                        if i < max_dim:
                            fenshu = 0
                            for j in range(max_dim):
                                fenshu+=rank_re[min(i,j)][max(i,j)][m]*quanzhong[j]
                            fenshu = fenshu / (max_dim - 1)
                            if fenshu > float(args.ir_remove):
                                list2.append(ranks[i][m])
                            else:
                                list_hou.append(ranks[i][m])
                        else:
                            list2.append(ranks[i][m])
                    ranks[0:MAX_RANK_LEN2, m] = list2 + list_hou
        np.savetxt(os.path.join(result_dir, "{}_ranks.txt".format(dataset)), ranks.astype(np.int))
        if dataset == 'cdvs_test_retrieval':
            compute_map_and_print(dataset, ranks, cfg['gnd_id'])
        else:
            compute_map_and_print(dataset, ranks, cfg['gnd'])
예제 #22
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    #download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()
        """
        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg,i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg,i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net, images, args.image_size, transform, ms=ms, msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net, qimages, args.image_size, transform, bbxs=bbxs, ms=ms, msp=msp)
        
        print('>> {}: Evaluating...'.format(dataset))

        # convert to numpy
        vecs = vecs.numpy()
        qvecs = qvecs.numpy()

        print (vecs.shape)
        print (qvecs.shape)

        # search, rank, and print
        scores = np.dot(vecs.T, qvecs)
        print (scores.shape)

        # to save scores (single query)
        # oxford
        #f = 'oxf_single.npy'
        # paris
        #f = 'par_single.npy'
        # roxford
        #f = 'roxf_single.npy'
        # rparis
        f = 'rpar_single.npy'

        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset, ranks, cfg['gnd'])
    
        if Lw is not None:
            # whiten the vectors
            vecs_lw  = whitenapply(vecs, Lw['m'], Lw['P'])
            qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

            # search, rank, and print
            scores = np.dot(vecs_lw.T, qvecs_lw)
            # save
            np.save(f, scores)

            ranks = np.argsort(-scores, axis=0)
            compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])
        """

        ############################################################
        # Test
        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]

        print(qimages)

        # to load scores
        # oxford
        #f = 'oxf_single.npy'
        #f = 'oxf_mq_avg.npy'
        #f = 'oxf_mq_max.npy'
        #f = 'oxf_sc_imf.npy'

        # paris
        #f = 'par_single.npy'
        #f = 'par_mq_avg.npy'
        #f = 'par_mq_max.npy'
        f = 'par_sc_imf.npy'

        # roxford
        #f = 'roxf_single.npy'
        #f = 'roxf_mq_avg.npy'
        #f = 'roxf_mq_max.npy'
        #f = 'roxf_sc_imf.npy'

        # rparis
        #f = 'rpar_single.npy'
        #f = 'rpar_mq_avg.npy'
        #f = 'rpar_mq_max.npy'
        #f = 'rpar_sc_imf.npy'

        # load
        scores = np.load(f)
        ranks = np.argsort(-scores, axis=0)
        compute_map_and_print(dataset + ' + whiten', ranks, cfg['gnd'])

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))
예제 #23
0
net_params = {}
net_params['architecture'] = state['meta']['architecture']
net_params['pooling'] = state['meta']['pooling']
net_params['local_whitening'] = state['meta'].get('local_whitening', False)
net_params['regional'] = state['meta'].get('regional', False)
net_params['whitening'] = state['meta'].get('whitening', False)
net_params['mean'] = state['meta']['mean']
net_params['std'] = state['meta']['std']
net_params['pretrained'] = False
#
# load network
net = init_network(net_params)
net.load_state_dict(state['state_dict'])

#config groundtruth
cfg = configdataset('oxford5k', os.path.join(get_data_root(), 'test'))

#parameter
normalize = transforms.Normalize(mean=net.meta['mean'], std=net.meta['std'])
transform = transforms.Compose([transforms.ToTensor(), normalize])

ms = list(eval('[1, 1/2**(1/2), 1/2]'))
if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
        'regional'] and not net.meta['whitening']:
    msp = net.pool.p.item()
    print(">> Set-up multiscale:")
    print(">>>> ms: {}".format(ms))
    print(">>>> msp: {}".format(msp))
else:
    msp = 1
예제 #24
0
파일: train.py 프로젝트: tmcortes/BELoss
def testOxfordParisHolidays(net, eConfig):

    #datasets = eConfig['test-datasets'].split(',')
    #results = []
    #
    #for dataset in datasets:
    #    results.append((dataset, np.random.rand(1)[0]))
    #
    #return results

    print('>> Evaluating network on test datasets...')

    # for testing we use image size of max 1024
    image_size = 1024

    # setting up the multi-scale parameters
    ms = [1]
    msp = 1
    if (eConfig['multiscale']):
        ms = [1, 1. / math.sqrt(2), 1. / 2]
        if net.meta['pooling'] == 'gem' and net.whiten is None:
            msp = net.pool.p.data.tolist()[0]

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()
    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if eConfig['whitening']:

        start = time.time()

        print('>> {}: Learning whitening...'.format(eConfig['test-whiten']))

        # loading db
        db_root = os.path.join(get_data_root(), 'train',
                               eConfig['test-whiten'])
        ims_root = os.path.join(db_root, 'ims')
        db_fn = os.path.join(db_root,
                             '{}-whiten.pkl'.format(eConfig['test-whiten']))
        with open(db_fn, 'rb') as f:
            db = pickle.load(f)
        images = [
            cid2filename(db['cids'][i], ims_root)
            for i in range(len(db['cids']))
        ]

        # extract whitening vectors
        print('>> {}: Extracting...'.format(eConfig['test-whiten']))
        wvecs = extract_vectors(net,
                                images,
                                image_size,
                                transform,
                                ms=ms,
                                msp=msp)

        # learning whitening
        print('>> {}: Learning...'.format(eConfig['test-whiten']))
        wvecs = wvecs.numpy()
        m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
        Lw = {'m': m, 'P': P}

        print('>> {}: elapsed time: {}'.format(eConfig['test-whiten'],
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = eConfig['test-datasets'].split(',')
    results = []

    for dataset in datasets:
        start = time.time()

        if (dataset != 'holidays' and dataset != 'rholidays'):
            print('>> {}: Extracting...'.format(dataset))

            # prepare config structure for the test dataset
            cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
            images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
            qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]

            if (dataset == 'oxford105k' or dataset == 'paris106k'):
                images.extend(cfg['distractors'])

            # extract database and query vectors
            print('>> {}: database images...'.format(dataset))
            vecs = extract_vectors(net,
                                   images,
                                   image_size,
                                   transform,
                                   ms=ms,
                                   msp=msp)
            print('>> {}: query images...'.format(dataset))
            qvecs = extract_vectors(net,
                                    qimages,
                                    image_size,
                                    transform,
                                    bbxs,
                                    ms=ms,
                                    msp=msp)
            print('>> {}: Evaluating...'.format(dataset))

            # convert to numpy
            vecs = vecs.numpy()
            qvecs = qvecs.numpy()

            # search, rank, and print
            scores = np.dot(vecs.T, qvecs)
            ranks = np.argsort(-scores, axis=0)
            results.append(
                compute_map_and_print(
                    dataset +
                    ('+ multiscale' if eConfig['multiscale'] else ''), ranks,
                    cfg['gnd']))

            if Lw is not None:
                # whiten the vectors
                vecs_lw = whitenapply(vecs, Lw['m'], Lw['P'])
                qvecs_lw = whitenapply(qvecs, Lw['m'], Lw['P'])

                # search, rank, and print
                scores = np.dot(vecs_lw.T, qvecs_lw)
                ranks = np.argsort(-scores, axis=0)
                results.append(
                    compute_map_and_print(dataset + ' + whiten', ranks,
                                          cfg['gnd']))

        else:
            results.append(testHolidays(net, eConfig, dataset, Lw))

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))

    return results
예제 #25
0
def main():
    args = parser.parse_args()

    # check if there are unknown datasets
    for dataset in args.datasets.split(','):
        if dataset not in datasets_names:
            raise ValueError(
                'Unsupported or unknown dataset: {}!'.format(dataset))

    # check if test dataset are downloaded
    # and download if they are not
    download_train(get_data_root())
    download_test(get_data_root())

    # setting up the visible GPU
    os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id

    # loading network from path
    if args.network_path is not None:

        print(">> Loading network:\n>>>> '{}'".format(args.network_path))
        if args.network_path in PRETRAINED:
            # pretrained networks (downloaded automatically)
            state = load_url(PRETRAINED[args.network_path],
                             model_dir=os.path.join(get_data_root(),
                                                    'networks'))
        else:
            # fine-tuned network from path
            state = torch.load(args.network_path)

        # parsing net params from meta
        # architecture, pooling, mean, std required
        # the rest has default values, in case that is doesnt exist
        net_params = {}
        net_params['architecture'] = state['meta']['architecture']
        net_params['pooling'] = state['meta']['pooling']
        net_params['local_whitening'] = state['meta'].get(
            'local_whitening', False)
        net_params['regional'] = state['meta'].get('regional', False)
        net_params['whitening'] = state['meta'].get('whitening', False)
        net_params['mean'] = state['meta']['mean']
        net_params['std'] = state['meta']['std']
        net_params['pretrained'] = False

        # load network
        net = init_network(net_params)
        net.load_state_dict(state['state_dict'])

        # if whitening is precomputed
        if 'Lw' in state['meta']:
            net.meta['Lw'] = state['meta']['Lw']

        print(">>>> loaded network: ")
        print(net.meta_repr())

    # loading offtheshelf network
    elif args.network_offtheshelf is not None:

        # parse off-the-shelf parameters
        offtheshelf = args.network_offtheshelf.split('-')
        net_params = {}
        net_params['architecture'] = offtheshelf[0]
        net_params['pooling'] = offtheshelf[1]
        net_params['local_whitening'] = 'lwhiten' in offtheshelf[2:]
        net_params['regional'] = 'reg' in offtheshelf[2:]
        net_params['whitening'] = 'whiten' in offtheshelf[2:]
        net_params['pretrained'] = True

        # load off-the-shelf network
        print(">> Loading off-the-shelf network:\n>>>> '{}'".format(
            args.network_offtheshelf))
        net = init_network(net_params)
        print(">>>> loaded network: ")
        print(net.meta_repr())

    # setting up the multi-scale parameters
    ms = list(eval(args.multiscale))
    if len(ms) > 1 and net.meta['pooling'] == 'gem' and not net.meta[
            'regional'] and not net.meta['whitening']:
        msp = net.pool.p.item()
        print(">> Set-up multiscale:")
        print(">>>> ms: {}".format(ms))
        print(">>>> msp: {}".format(msp))
    else:
        msp = 1

    # moving network to gpu and eval mode
    net.cuda()
    net.eval()

    # set up the transform
    normalize = transforms.Normalize(mean=net.meta['mean'],
                                     std=net.meta['std'])
    transform = transforms.Compose([transforms.ToTensor(), normalize])

    # compute whitening
    if args.whitening is not None:
        start = time.time()

        if 'Lw' in net.meta and args.whitening in net.meta['Lw']:

            print('>> {}: Whitening is precomputed, loading it...'.format(
                args.whitening))

            if len(ms) > 1:
                Lw = net.meta['Lw'][args.whitening]['ms']
            else:
                Lw = net.meta['Lw'][args.whitening]['ss']

        else:

            # if we evaluate networks from path we should save/load whitening
            # not to compute it every time
            if args.network_path is not None:
                whiten_fn = args.network_path + '_{}_whiten'.format(
                    args.whitening)
                if len(ms) > 1:
                    whiten_fn += '_ms'
                whiten_fn += '.pth'
            else:
                whiten_fn = None

            if whiten_fn is not None and os.path.isfile(whiten_fn):
                print('>> {}: Whitening is precomputed, loading it...'.format(
                    args.whitening))
                Lw = torch.load(whiten_fn)

            else:
                print('>> {}: Learning whitening...'.format(args.whitening))

                # loading db
                db_root = os.path.join(get_data_root(), 'train',
                                       args.whitening)
                ims_root = os.path.join(db_root, 'ims')
                db_fn = os.path.join(db_root,
                                     '{}-whiten.pkl'.format(args.whitening))
                with open(db_fn, 'rb') as f:
                    db = pickle.load(f)
                images = [
                    cid2filename(db['cids'][i], ims_root)
                    for i in range(len(db['cids']))
                ]

                # extract whitening vectors
                print('>> {}: Extracting...'.format(args.whitening))
                wvecs = extract_vectors(net,
                                        images,
                                        args.image_size,
                                        transform,
                                        ms=ms,
                                        msp=msp)

                # learning whitening
                print('>> {}: Learning...'.format(args.whitening))
                wvecs = wvecs.numpy()
                m, P = whitenlearn(wvecs, db['qidxs'], db['pidxs'])
                Lw = {'m': m, 'P': P}

                # saving whitening if whiten_fn exists
                if whiten_fn is not None:
                    print('>> {}: Saving to {}...'.format(
                        args.whitening, whiten_fn))
                    torch.save(Lw, whiten_fn)

        print('>> {}: elapsed time: {}'.format(args.whitening,
                                               htime(time.time() - start)))

    else:
        Lw = None

    # evaluate on test datasets
    datasets = args.datasets.split(',')
    for dataset in datasets:
        start = time.time()

        print('>> {}: Extracting...'.format(dataset))

        # prepare config structure for the test dataset
        cfg = configdataset(dataset, os.path.join(get_data_root(), 'test'))
        images = [cfg['im_fname'](cfg, i) for i in range(cfg['n'])]
        qimages = [cfg['qim_fname'](cfg, i) for i in range(cfg['nq'])]
        try:
            bbxs = [tuple(cfg['gnd'][i]['bbx']) for i in range(cfg['nq'])]
        except:
            bbxs = None  # for holidaysmanrot and copydays

        #自定义的抽取

        names = []
        images_path = []
        qimages_path = []
        #运行时候要更改的参数
        L = 2
        # prepath="E:\\PycharmProjects\\image-retrieval\\data\\test\\rparis6k\\jpg\\"
        prepath = "E:\\PycharmProjects\\image-retrieval\\ox1\\"
        for i, img_path in enumerate(images):
            img_name = os.path.split(img_path)[1]
            print(img_name)
            if L > 1:
                img_name = os.path.splitext(img_name)[0]
                for i in range(1, L + 1):
                    for j in range(1, L + 1):
                        names.append(img_name + "_" + str(i - 1) + str(j - 1) +
                                     ".jpg")
                        images_path.append(prepath + img_name + "_" +
                                           str(i - 1) + str(j - 1) + ".jpg")
            else:
                names.append(img_name)
                images_path.append(prepath + img_name)
        qnames = []
        print("-----------query images-----------")
        for i, img_path in enumerate(qimages):
            img_name = os.path.split(img_path)[1]
            print(img_name)
            if L > 1:
                img_name = os.path.splitext(img_name)[0]
                for i in range(1, L + 1):
                    for j in range(1, L + 1):
                        qnames.append(img_name + "_" + str(i - 1) +
                                      str(j - 1) + ".jpg")
                        qimages_path.append(prepath + img_name + "_" +
                                            str(i - 1) + str(j - 1) + ".jpg")
            else:
                qnames.append(img_name)
                qimages_path.append(prepath + img_name)

        # extract database and query vectors
        print('>> {}: database images...'.format(dataset))
        vecs = extract_vectors(net,
                               images_path,
                               args.image_size,
                               transform,
                               ms=ms,
                               msp=msp)
        print('>> {}: query images...'.format(dataset))
        qvecs = extract_vectors(net,
                                qimages_path,
                                args.image_size,
                                transform,
                                ms=ms,
                                msp=msp)
        # convert to numpy
        vecs = vecs.numpy()
        vecs = vecs.T

        qvecs = qvecs.numpy()
        qvecs = qvecs.T

        print("--------------------------------------------------")
        print("      writing feature extraction results ...")
        print("--------------------------------------------------")
        output = "gem_res_rox_2.h5"
        h5f = h5py.File(output, 'w')
        h5f.create_dataset('dataset_1', data=vecs)
        h5f.create_dataset('dataset_2', data=np.string_(names))
        h5f.create_dataset('dataset_3', data=qvecs)
        h5f.create_dataset('dataset_4', data=np.string_(qnames))
        h5f.close()

        print('>> {}: elapsed time: {}'.format(dataset,
                                               htime(time.time() - start)))