def forward(self, question_embed, question_mask, column_embed, column_name_mask, col_idx): B, C_L, N_L, embed_D = list(column_embed.size()) # Column Encoder encoded_column = utils.encode_column(column_embed, column_name_mask, self.column_rnn) encoded_used_column = utils.filter_used_column( encoded_column, col_idx, padding_count=self.column_maxlen) encoded_question, _ = self.question_rnn(question_embed) if self.column_attention: attn_matrix = torch.matmul( self.linear_attn(encoded_question).unsqueeze(1), encoded_used_column.unsqueeze(3)).squeeze() attn_matrix = f.add_masked_value(attn_matrix, question_mask.unsqueeze(1), value=-1e7) attn_matrix = F.softmax(attn_matrix, dim=-1) attn_question = (encoded_question.unsqueeze(1) * attn_matrix.unsqueeze(3)).sum(2) else: attn_matrix = self.seq_attn(encoded_question, question_mask) attn_question = f.weighted_sum(attn_matrix, encoded_question) attn_question = attn_question.unsqueeze(1) return self.mlp( self.linear_question(attn_question) + self.linear_column(encoded_used_column)).squeeze()
def forward(self, question_embed, question_mask, column_embed, column_name_mask, column_mask): B, C_L, N_L, embed_D = list(column_embed.size()) # Column Encoder encoded_column = utils.encode_column(column_embed, column_name_mask, self.column_rnn) encoded_question, _ = self.question_rnn(question_embed) if self.column_attention: attn_matrix = torch.bmm( encoded_column, self.linear_attn(encoded_question).transpose(1, 2)) attn_matrix = f.add_masked_value(attn_matrix, question_mask.unsqueeze(1), value=-1e7) attn_matrix = F.softmax(attn_matrix, dim=-1) attn_question = (encoded_question.unsqueeze(1) * attn_matrix.unsqueeze(3)).sum(2) else: attn_matrix = self.seq_attn(encoded_question, question_mask) attn_question = f.weighted_sum(attn_matrix, encoded_question) attn_question = attn_question.unsqueeze(1) logits = self.mlp( self.linear_question(attn_question) + self.linear_column(encoded_column)).squeeze() logits = f.add_masked_value(logits, column_mask, value=-1e7) return logits
def _x2key(self, S, key, key_mask): if self.self_attn: bias = torch.exp(self.bias) S = torch.exp(S) attention = S / (S.sum(dim=-1, keepdim=True).expand(S.size()) + bias.expand(S.size())) else: attention = F.softmax(S, dim=-1) # (B, C_L, Q_L) x2key = f.weighted_sum(attention=attention, matrix=key) # (B, C_L, 2d) return x2key
def forward(self, question_embed, question_mask, column_embed, column_name_mask, column_mask): B, C_L, N_L, embed_D = list(column_embed.size()) encoded_column = utils.encode_column(column_embed, column_name_mask, self.column_rnn) attn_column = self.column_seq_attn(encoded_column, column_mask) out_column = f.weighted_sum(attn_column, encoded_column) question_rnn_hidden_state = ( self.column_to_hidden_state(out_column).view( B, self.column_maxlen, self.model_dim // 2).transpose(0, 1).contiguous()) question_rnn_cell_state = (self.column_to_cell_state(out_column).view( B, self.column_maxlen, self.model_dim // 2).transpose(0, 1).contiguous()) encoded_question, _ = self.question_rnn( question_embed, (question_rnn_hidden_state, question_rnn_cell_state)) attn_question = self.question_seq_attn(encoded_question, question_mask) out_question = f.weighted_sum(attn_question, encoded_question) return self.mlp(out_question)
def _key2x(self, S, x, x_mask): attention = f.masked_softmax(S, x_mask) # (B, C_L) key2x = f.weighted_sum(attention=attention, matrix=x) return key2x.unsqueeze(1).expand(x.size()) # (B, C_L, 2d)
def forward(self, features, labels=None): """ * Args: features: feature dictionary like below. {"feature_name1": { "token_name1": tensor, "toekn_name2": tensor}, "feature_name2": ...} * Kwargs: label: label dictionary like below. {"label_name1": tensor, "label_name2": tensor} Do not calculate loss when there is no label. (inference/predict mode) * Returns: output_dict (dict) consisting of - start_logits: representing unnormalized log probabilities of the span start position. - end_logits: representing unnormalized log probabilities of the span end position. - best_span: the string from the original passage that the model thinks is the best answer to the question. - answer_idx: the question id, mapping with answer - loss: A scalar loss to be optimised. """ context = features["context"] question = features["question"] # Sorted Sequence config (seq_lengths, perm_idx, unperm_idx) for RNN pack_forward context_seq_config = f.get_sorted_seq_config(context) query_seq_config = f.get_sorted_seq_config(question) # Embedding Layer (Char + Word -> Contextual) query_params = {"frequent_word": {"frequent_tuning": True}} context_embed, query_embed = self.token_embedder( context, question, query_params=query_params, query_align=self.aligned_query_embedding) context_mask = f.get_mask_from_tokens(context).float() query_mask = f.get_mask_from_tokens(question).float() B, C_L = context_embed.size(0), context_embed.size(1) context_embed = self.context_highway(context_embed) query_embed = self.query_highway(query_embed) context_encoded = f.forward_rnn_with_pack(self.context_contextual_rnn, context_embed, context_seq_config) context_encoded = self.dropout(context_encoded) query_encoded = f.forward_rnn_with_pack(self.query_contextual_rnn, query_embed, query_seq_config) query_encoded = self.dropout(query_encoded) # Attention Flow Layer attention_context_query = self.attention(context_encoded, context_mask, query_encoded, query_mask) # Modeling Layer modeled_context = f.forward_rnn_with_pack(self.modeling_rnn, attention_context_query, context_seq_config) modeled_context = self.dropout(modeled_context) M_D = modeled_context.size(-1) # Output Layer span_start_input = self.dropout( torch.cat([attention_context_query, modeled_context], dim=-1)) # (B, C_L, 10d) span_start_logits = self.span_start_linear(span_start_input).squeeze( -1) # (B, C_L) span_start_probs = f.masked_softmax(span_start_logits, context_mask) span_start_representation = f.weighted_sum(attention=span_start_probs, matrix=modeled_context) tiled_span_start_representation = span_start_representation.unsqueeze( 1).expand(B, C_L, M_D) span_end_representation = torch.cat( [ attention_context_query, modeled_context, tiled_span_start_representation, modeled_context * tiled_span_start_representation, ], dim=-1, ) encoded_span_end = f.forward_rnn_with_pack(self.output_end_rnn, span_end_representation, context_seq_config) encoded_span_end = self.dropout(encoded_span_end) span_end_input = self.dropout( torch.cat([attention_context_query, encoded_span_end], dim=-1)) span_end_logits = self.span_end_linear(span_end_input).squeeze(-1) # Masked Value span_start_logits = f.add_masked_value(span_start_logits, context_mask, value=-1e7) span_end_logits = f.add_masked_value(span_end_logits, context_mask, value=-1e7) # No_Answer Bias bias = self.bias.expand(B, 1) span_start_logits = torch.cat([span_start_logits, bias], dim=-1) span_end_logits = torch.cat([span_end_logits, bias], dim=-1) output_dict = { "start_logits": span_start_logits, "end_logits": span_end_logits, "best_span": self.get_best_span( span_start_logits[:, :-1], span_end_logits[:, :-1], answer_maxlen=self.answer_maxlen, # except no_answer bias ), } if labels: answer_idx = labels["answer_idx"] answer_start_idx = labels["answer_start_idx"] answer_end_idx = labels["answer_end_idx"] answerable = labels["answerable"] # No_Asnwer Case C_L = context_mask.size(1) answer_start_idx = answer_start_idx.masked_fill( answerable.eq(0), C_L) answer_end_idx = answer_end_idx.masked_fill(answerable.eq(0), C_L) output_dict["answer_idx"] = answer_idx # Loss loss = self.criterion(span_start_logits, answer_start_idx) loss += self.criterion(span_end_logits, answer_end_idx) output_dict["loss"] = loss.unsqueeze( 0) # NOTE: DataParallel concat Error return output_dict
def forward(self, features, labels=None): """ * Args: features: feature dictionary like below. {"feature_name1": { "token_name1": tensor, "toekn_name2": tensor}, "feature_name2": ...} * Kwargs: label: label dictionary like below. {"label_name1": tensor, "label_name2": tensor} Do not calculate loss when there is no label. (inference/predict mode) * Returns: output_dict (dict) consisting of - start_logits: representing unnormalized log probabilities of the span start position. - end_logits: representing unnormalized log probabilities of the span end position. - best_span: the string from the original passage that the model thinks is the best answer to the question. - data_idx: the question id, mapping with answer - loss: A scalar loss to be optimised. """ context = features["context"] # aka paragraph question = features["question"] # Sorted Sequence config (seq_lengths, perm_idx, unperm_idx) for RNN pack_forward context_seq_config = f.get_sorted_seq_config(context) query_seq_config = f.get_sorted_seq_config(question) # Embedding query_params = {"frequent_word": {"frequent_tuning": True}} context_embed, query_embed = self.token_embedder( context, question, query_params=query_params, query_align=self.aligned_query_embedding) context_mask = f.get_mask_from_tokens(context).float() query_mask = f.get_mask_from_tokens(question).float() context_embed = self.dropout(context_embed) query_embed = self.dropout(query_embed) # RNN (LSTM) context_encoded = f.forward_rnn_with_pack(self.paragraph_rnn, context_embed, context_seq_config) context_encoded = self.dropout(context_encoded) query_encoded = f.forward_rnn_with_pack( self.query_rnn, query_embed, query_seq_config) # (B, Q_L, H*2) query_encoded = self.dropout(query_encoded) query_attention = self.query_att(query_encoded, query_mask) # (B, Q_L) query_att_sum = f.weighted_sum(query_attention, query_encoded) # (B, H*2) span_start_logits = self.start_attn(context_encoded, query_att_sum, context_mask) span_end_logits = self.end_attn(context_encoded, query_att_sum, context_mask) # Masked Value span_start_logits = f.add_masked_value(span_start_logits, context_mask, value=-1e7) span_end_logits = f.add_masked_value(span_end_logits, context_mask, value=-1e7) output_dict = { "start_logits": span_start_logits, "end_logits": span_end_logits, "best_span": self.get_best_span(span_start_logits, span_end_logits, answer_maxlen=self.answer_maxlen), } if labels: data_idx = labels["data_idx"] answer_start_idx = labels["answer_start_idx"] answer_end_idx = labels["answer_end_idx"] output_dict["data_idx"] = data_idx loss = self.criterion(span_start_logits, answer_start_idx) loss += self.criterion(span_end_logits, answer_end_idx) output_dict["loss"] = loss.unsqueeze(0) return output_dict
def forward(self, question_embed, question_mask): encoded_question, _ = self.question_rnn(question_embed) attn_matrix = self.seq_attn(encoded_question, question_mask) attn_question = f.weighted_sum(attn_matrix, encoded_question) logits = self.mlp(attn_question) return logits
def _query2context(self, S, c, c_mask): attention = f.masked_softmax(S, c_mask) # (B, C_L) q2c = f.weighted_sum(attention=attention, matrix=c) return q2c.unsqueeze(1).expand(c.size()) # (B, C_L, 2d)
def _context2query(self, S, q, q_mask): attention = f.last_dim_masked_softmax(S, q_mask) # (B, C_L, Q_L) c2q = f.weighted_sum(attention=attention, matrix=q) # (B, C_L, 2d) return c2q