예제 #1
0
def test_inputs():
    horizon, theta, deadline, solver_type = get_solver_param()
    g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim()

    specs = MyInputs()

    specs.set_theta(theta)
    specs.set_deadline(deadline)
    specs.set_solver_type(solver_type)
    specs.set_horizon(horizon)
    specs.set_graph(0)
    specs.set_start_target(v0_target)
    specs.set_start_searchers(v0_searchers)
    specs.set_target_motion(target_motion)
    specs.set_belief_distribution(belief_distribution)

    assert g["name"] == specs.graph["name"]
    assert specs.horizon == horizon
    assert specs.theta == theta
    assert specs.start_target_random is False
    assert specs.start_target_true == v0_target[0]
    assert specs.start_searcher_random is False
    assert specs.start_searcher_v == v0_searchers
    assert specs.target_motion == target_motion
    assert specs.belief_distribution == belief_distribution
예제 #2
0
def my_specs():
    theta = 2
    deadline = 6
    horizon = 3
    solver_type = 'central'

    graph_file = 'G7V_test.p'
    g = ext.get_graph(graph_file)
    target_motion = 'random'
    belief_distribution = 'uniform'

    v0_target = [7]
    v0_searchers = [1, 2]

    specs = MyInputs()

    specs.set_graph(0)
    specs.set_theta(theta)
    specs.set_deadline(deadline)
    specs.set_solver_type(solver_type)
    specs.set_horizon(horizon)
    specs.set_start_target(v0_target)
    specs.set_start_searchers(v0_searchers)
    specs.set_target_motion(target_motion)
    specs.set_belief_distribution(belief_distribution)

    return specs
예제 #3
0
def my_specs():
    horizon, theta, deadline, solver_type = get_solver_param()
    g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim()

    specs = MyInputs()

    specs.set_graph(0)
    specs.set_theta(theta)
    specs.set_deadline(deadline)
    specs.set_solver_type(solver_type)
    specs.set_horizon(horizon)
    specs.set_start_target(v0_target)
    specs.set_start_searchers(v0_searchers)
    specs.set_target_motion(target_motion)
    specs.set_belief_distribution(belief_distribution)

    return specs