def test_inputs(): horizon, theta, deadline, solver_type = get_solver_param() g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim() specs = MyInputs() specs.set_theta(theta) specs.set_deadline(deadline) specs.set_solver_type(solver_type) specs.set_horizon(horizon) specs.set_graph(0) specs.set_start_target(v0_target) specs.set_start_searchers(v0_searchers) specs.set_target_motion(target_motion) specs.set_belief_distribution(belief_distribution) assert g["name"] == specs.graph["name"] assert specs.horizon == horizon assert specs.theta == theta assert specs.start_target_random is False assert specs.start_target_true == v0_target[0] assert specs.start_searcher_random is False assert specs.start_searcher_v == v0_searchers assert specs.target_motion == target_motion assert specs.belief_distribution == belief_distribution
def my_specs(): theta = 2 deadline = 6 horizon = 3 solver_type = 'central' graph_file = 'G7V_test.p' g = ext.get_graph(graph_file) target_motion = 'random' belief_distribution = 'uniform' v0_target = [7] v0_searchers = [1, 2] specs = MyInputs() specs.set_graph(0) specs.set_theta(theta) specs.set_deadline(deadline) specs.set_solver_type(solver_type) specs.set_horizon(horizon) specs.set_start_target(v0_target) specs.set_start_searchers(v0_searchers) specs.set_target_motion(target_motion) specs.set_belief_distribution(belief_distribution) return specs
def my_specs(): horizon, theta, deadline, solver_type = get_solver_param() g, v0_target, v0_searchers, target_motion, belief_distribution = parameters_sim() specs = MyInputs() specs.set_graph(0) specs.set_theta(theta) specs.set_deadline(deadline) specs.set_solver_type(solver_type) specs.set_horizon(horizon) specs.set_start_target(v0_target) specs.set_start_searchers(v0_searchers) specs.set_target_motion(target_motion) specs.set_belief_distribution(belief_distribution) return specs