def train(): model = LogisticRegression((4, 1)) dataloader = DataLoader() dataloader.train_validation_test_split() train_X, train_Y = dataloader.get_train() val_X, val_Y = dataloader.get_validation() test_X, test_Y = dataloader.get_test() return train_X, train_Y
def _classifier(self, X, y): if self.classifier == 'logistic_regression': self.model_classifier = LogisticRegression() self.model_classifier.fit(X, y) elif self.classifier == 'svm': self.model_classifier = SVC() self.model_classifier.fit(X, y) elif self.classifier == 'neural_network': self.model_classifier = NeuralNetwork(X.shape[1], len(self.cls2num)) self.model_classifier.fit(X, y, epochs = 20, batch_size=16) else: # error return None
def test_Dropout(): npy_rng = numpy.random.RandomState(123) theano_rng = RandomStreams(123) data_x = theano.shared( 100 * npy_rng.normal(0, 1, [1000, 50]).astype(theano.config.floatX)) data_y = theano.shared( npy_rng.randint(0, 10, 1000)) ae = ClassicalAutoencoder( 50, 70, vistype='real', hidtype='binary', tie=True ) sl = LinearLayer(50, 70) + LogisticRegression(70, 10) # sl.print_layer() lg = LogisticRegression(50, 10) # lg.print_layer() ae_recon = theano.function( [], ae.reconstruction(), givens={ae.varin: data_x} ) sl_output = theano.function( [], sl.output(), givens={sl.varin: data_x} ) lg_output = theano.function( [], lg.output(), givens={lg.varin: data_x} ) recon_before_dropout = ae_recon() output_before_dropout = sl_output() lgoutput_before_dropout = lg_output() dropout_ae = Dropout(ae, [0.2, 0.5], theano_rng=theano_rng) dropout_sl = Dropout(sl, [0.7, 0.5], theano_rng=theano_rng) dropout_lg = Dropout(lg, [0.5], theano_rng=theano_rng) # dropout_ae.dropout_model.print_layer() # dropout_sl.dropout_model.print_layer() # dropout_lg.dropout_model.print_layer() ae_recon = theano.function( [], ae.reconstruction(), givens={ae.varin: data_x} ) sl_output = theano.function( [], sl.output(), givens={sl.varin: data_x} ) lg_output = theano.function( [], lg.output(), givens={lg.varin: data_x} ) recon_after_dropout = ae_recon() output_after_dropout = sl_output() lgoutput_after_dropout = lg_output() assert numpy.allclose(recon_before_dropout, recon_after_dropout) assert numpy.allclose(output_before_dropout, output_after_dropout) assert numpy.allclose(lgoutput_before_dropout, lgoutput_after_dropout)
break prev_cost = cost save_params( model, 'ZLIN_4000_1000_4000_1000_4000_1000_4000_normhid_nolinb_cae1_dropout.npy' ) print "Done." ######################### # BUILD FINE-TUNE MODEL # ######################### print "\n\n... building fine-tune model -- contraction 1" for imodel in model.models_stack: imodel.threshold = 0. model_ft = model + LogisticRegression(hid_layer_sizes[-1], 10, npy_rng=npy_rng) model_ft.print_layer() train_set_error_rate = theano.function( [], T.mean(T.neq(model_ft.models_stack[-1].predict(), train_y)), givens={model_ft.varin: train_x}, ) test_set_error_rate = theano.function( [], T.mean(T.neq(model_ft.models_stack[-1].predict(), test_y)), givens={model_ft.varin: test_x}, ) print "Done." print "... training with conjugate gradient: minimize.py"
X_train = df.drop('survived', axis=1) #test to see what are the feature that are really important for the learning of the model delete = ['survived', 'age', 'sibling', 'parents', 'ticket', 'fare'] #my titanic experience my_titanic = [1, 0, 24.0, 0, 0, 7.000] died = ['sex', 'survived'] Positive_train = df.drop(delete, axis=1) Negative_train = df.drop(died, axis=1) y_train = df['survived'] X_test = df2.drop('survived', axis=1) y_test = df2['survived'] prova = LogisticRegression() ''' prova2 = LogisticRegression() prova3 = LogisticRegression() ''' w, b = prova.fit(X_train, y_train) #fit the model only with sex feature ''' wp,bp = prova2.fit(Positive_train,y_train) #fit the model without sex feature wn,bn = prova3.fit(Negative_train,y_train) '''
datasets = load_data('/data/lisa/data/mnist.pkl.gz') train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] npy_rng = numpy.random.RandomState(123) ############### # BUILD MODEL # ############### model = ClassicalAutoencoder( 784, 784, vistype='binary', npy_rng=npy_rng) + ClassicalAutoencoder( 784, 784, vistype='binary', npy_rng=npy_rng) + ClassicalAutoencoder( 784, 784, vistype='binary', npy_rng=npy_rng) + LogisticRegression( 784, 10, npy_rng=npy_rng) error_rate = theano.function( [], T.mean(T.neq(model.models_stack[-1].predict(), test_set_y)), givens={model.models_stack[0].varin: test_set_x}, ) ############# # PRE-TRAIN # ############# for i in range(len(model.models_stack) - 1): print "\n\nPre-training layer %d:" % i trainer = GraddescentMinibatch(varin=model.varin, data=train_set_x,
######################### # BUILD PRE-TRAIN MODEL # ######################### print "... building models" npy_rng = numpy.random.RandomState(123) model = ReluAutoencoder(train_x.get_value().shape[1], hid_layer_sizes[0], vistype='real', tie=True, npy_rng=npy_rng) + ReluAutoencoder( hid_layer_sizes[0], hid_layer_sizes[1], vistype='real', tie=True, npy_rng=npy_rng) + LogisticRegression( hid_layer_sizes[1], 10, npy_rng=npy_rng) print "\nModel for SGD:" model.print_layer() train_set_error_rate = theano.function( [], T.mean(T.neq(model.models_stack[-1].predict(), train_y)), givens={model.varin: train_x}, ) test_set_error_rate = theano.function( [], T.mean(T.neq(model.models_stack[-1].predict(), test_y)), givens={model.varin: test_x}, )