list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) list_tokenized_total = tokenizer.texts_to_sequences(X_total) input_total = sequence.pad_sequences(list_tokenized_total, maxlen=maxlen) print("model1") model1 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ltc.hdf5" retrain_path = model_dir_retrain + "model_ltc_{epoch:02d}.hdf5" model1.load_weights(file_path) checkpoint = ModelCheckpoint(retrain_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model1.fit(input_total, Y_total_ltc, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_ltc), callbacks=callbacks_list, verbose=2) del model1 del history gc.collect() K.clear_session() print("model2") model2 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ldfbd.hdf5" retrain_path = model_dir_retrain + "model_ldfbd_{epoch:02d}.hdf5" model2.load_weights(file_path) checkpoint = ModelCheckpoint(retrain_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model2.fit(input_total, Y_total_ldfbd, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_ldfbd), callbacks=callbacks_list, verbose=2)
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model17") model17 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_dl_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model17.fit(input_train, Y_train_dl, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_dl), callbacks=callbacks_list, verbose=2) del model17 del history gc.collect() K.clear_session() print("model18") model18 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_dr_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model18.fit(input_train,
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model7") model7 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ssp_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model7.fit(input_train, Y_train_ssp, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_ssp), callbacks=callbacks_list, verbose=2) del model7 del history gc.collect() K.clear_session() print("model8") model8 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_pl_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model8.fit(input_train,
Y_validation_owta = pd.get_dummies(validation["others_willing_to_consume_again"])[[-2, -1, 0, 1]].values list_tokenized_train = tokenizer.texts_to_sequences(X_train) input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model9") model9 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_pce_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model9.fit(input_train, Y_train_pce, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_pce), callbacks=callbacks_list, verbose=2) del model9 del history gc.collect() K.clear_session() print("model10") model10 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_pd_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model10.fit(input_train, Y_train_pd, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_pd), callbacks=callbacks_list, verbose=2) del model10 del history
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model19") model19 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ooe_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model19.fit(input_train, Y_train_ooe, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_ooe), callbacks=callbacks_list, verbose=2) del model19 del history gc.collect() K.clear_session() print("model20") model20 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_owta_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics]
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model1") model1 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ltc_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model1.fit(input_train, Y_train_ltc, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_ltc), callbacks=callbacks_list, verbose=2) del model1 del history gc.collect() K.clear_session() print("model2") model2 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ldfbd_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model2.fit(input_train,
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model11") model11 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ed_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model11.fit(input_train, Y_train_ed, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_ed), callbacks=callbacks_list, verbose=2) del model11 del history gc.collect() K.clear_session() print("model12") model12 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_en_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics]
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model15") model15 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_dp_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model15.fit(input_train, Y_train_dp, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_dp), callbacks=callbacks_list, verbose=2) del model15 del history gc.collect() K.clear_session() print("model16") model16 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_dt_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model16.fit(input_train,
list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model13") model13 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_es_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model13.fit(input_train, Y_train_es, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_es), callbacks=callbacks_list, verbose=2) del model13 del history gc.collect() K.clear_session() print("model14") model14 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_ec_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics]
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model5") model5 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_swa_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model5.fit(input_train, Y_train_swa, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_swa), callbacks=callbacks_list, verbose=2) del model5 del history gc.collect() K.clear_session() print("model6") model6 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_spc_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model6.fit(input_train,
embedding_vector = embeddings_index.get( word ) #the function of embedding_index.get(word) is get the vector of the word. if embedding_vector is not None: embeddings_matrix[i] = embedding_vector #for example, word_index:{'the':1}, embedding_index:{'the': vector}, embedding_matrix:{1: vector} #line 86-128 one-hot enconding for all aspects in train and validation dataset Y_train = data.iloc[:, 22:].values Y_validation = validation.iloc[:, 22:].values print("model_rcnn") model = TextClassifier().model(embeddings_matrix, maxlen, word_index, 80) file_path = model_dir + "model_rcnn_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=1, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model.fit(input_train, Y_train, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation), callbacks=callbacks_list, verbose=1) del model1 del history gc.collect() # K.clear_session() #The basic usage of map see: https://www.runoob.com/python/python-func-map.html -> line 40.
input_train = sequence.pad_sequences(list_tokenized_train, maxlen=maxlen) list_tokenized_validation = tokenizer.texts_to_sequences(X_validation) input_validation = sequence.pad_sequences(list_tokenized_validation, maxlen=maxlen) print("model3") model3 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_letf_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model3.fit(input_train, Y_train_letf, batch_size=batch_size, epochs=epochs, validation_data=(input_validation, Y_validation_letf), callbacks=callbacks_list, verbose=2) del model3 del history gc.collect() K.clear_session() print("model4") model4 = TextClassifier().model(embeddings_matrix, maxlen, word_index, 4) file_path = model_dir + "model_swt_{epoch:02d}.hdf5" checkpoint = ModelCheckpoint(file_path, verbose=2, save_weights_only=True) metrics = Metrics() callbacks_list = [checkpoint, metrics] history = model4.fit(input_train,