def detect_image(self, image_data): scores = caffe_preprocess_and_compute( image_data, caffe_transformer=self.caffe_transformer, caffe_net=self.nsfw_net, output_layers=['prob']) return scores[1]
def classify(image_data, nsfw_net): # Classify. scores = classify_nsfw.caffe_preprocess_and_compute( image_data, caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=['prob']) return scores[1]
def classify(image_data, nsfw_net): # disable stdout null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] save = os.dup(1), os.dup(2) os.dup2(null_fds[0], 1) os.dup2(null_fds[1], 2) scores = classify_nsfw.caffe_preprocess_and_compute( image_data, caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=['prob']) # enable stdout os.dup2(save[0], 1) os.dup2(save[1], 2) os.close(null_fds[0]) os.close(null_fds[1]) return scores
def ck(): u0 = u = "" try: u0 = request.args.get('u') u = urllib.unquote(u0).decode('utf8') handle = urlopen(u) image_data = handle.read() # Classify. scores = classify_nsfw.caffe_preprocess_and_compute(image_data, caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=['prob']) # Scores is the array containing SFW / NSFW image probabilities # scores[1] indicates the NSFW probability # print "NSFW score: " , scores[1] rt = { "code": 0, "msg": "", "data": { "score" : scores[1] } } return jsonify(rt) except Exception as e: msg = "%s, decode: %s, raw: %s" % (str(e), u, u0) rt = { "code": 500, "msg": msg, "data": {} } return jsonify(rt)
def classify(image: bytes) -> np.float64: scores = caffe_preprocess_and_compute(image, caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=["prob"]) return scores[1]
def classify(image_path: str) -> np.float64: with open(image_path, "rb") as image: scores = caffe_preprocess_and_compute(image.read(), caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=["prob"]) return scores[1]