예제 #1
0
    def __init__(self, pkg, num_dim):
        super(ClawRunData, self).__init__()
        self.add_attribute('pkg', pkg)
        self.add_attribute('num_dim', num_dim)
        self.add_attribute('data_list', [])
        self.add_attribute('xclawcmd', None)

        # Always need the basic clawpack data object
        self.add_data(ClawInputData(num_dim), 'clawdata')

        # Add package specific data objects
        if pkg.lower() in ['classic', 'classicclaw']:
            self.xclawcmd = 'xclaw'

        elif pkg.lower() in ['amrclaw', 'amr']:

            import clawpack.amrclaw.data as amrclaw

            self.xclawcmd = 'xamr'
            self.add_data(ClawInputData(num_dim), 'clawdata')
            self.add_data(amrclaw.AmrclawInputData(self.clawdata), 'amrdata')
            self.add_data(amrclaw.RegionData(num_dim=num_dim), 'regiondata')
            self.add_data(amrclaw.GaugeData(num_dim=num_dim), 'gaugedata')

        elif pkg.lower() in ['geoclaw']:

            import clawpack.amrclaw.data as amrclaw
            import clawpack.geoclaw.data as geoclaw

            self.xclawcmd = 'xgeoclaw'

            # Required data set for basic run parameters:
            self.add_data(amrclaw.AmrclawInputData(self.clawdata), 'amrdata')
            self.add_data(amrclaw.RegionData(num_dim=num_dim), 'regiondata')
            self.add_data(amrclaw.GaugeData(num_dim=num_dim), 'gaugedata')
            self.add_data(geoclaw.GeoClawData(), ('geo_data'))
            self.add_data(geoclaw.TopographyData(), 'topo_data')
            self.add_data(geoclaw.DTopoData(), 'dtopo_data')
            self.add_data(geoclaw.RefinementData(), 'refinement_data')
            self.add_data(geoclaw.FixedGridData(), 'fixed_grid_data')
            self.add_data(geoclaw.QinitData(), 'qinit_data')
            self.add_data(geoclaw.FGmaxData(), 'fgmax_data')

            # can remove try-except after PR clawpack/geoclaw#80 is merged
            try:
                self.add_data(geoclaw.SurgeData(), 'surge_data')
                self.add_data(geoclaw.FrictionData(), 'friction_data')
            except:
                pass

        else:
            raise AttributeError("Unrecognized Clawpack pkg = %s" % pkg)
예제 #2
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surge.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surge.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008, 9, 13, 7) - datetime.datetime(
        2008, 1, 1, 0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.surge_afteraxes(
        cd, track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]

    wind_limits = [0, 64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.gauge_locations(current_data,gaugenos=[6])

    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]]
    gulf_shrink = 0.9

    def gulf_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        else:
            plt.subplots_adjust(left=0.05, bottom=0.07, right=1.00, top=0.93)
        surge_afteraxes(cd)

    #
    #  Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=gulf_shrink)
    surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)
    # surge.add_bathy_contours(plotaxes)
    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        1, 1, 1, 1, 1, 1, 1, 1
    ]

    #
    #  Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    # Speed
    surge.add_speed(plotaxes,
                    plot_type='contourf',
                    contours=speed_contours,
                    shrink=gulf_shrink)
    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)

    # Land
    surge.add_land(plotaxes)
    surge.add_bathy_contours(plotaxes)

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and True

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    # ========================================================================
    #  LaTex Shelf
    # ========================================================================
    latex_xlimits = [-97.5, -88.5]
    latex_ylimits = [27.5, 30.5]
    latex_shrink = 1.0

    def latex_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86)
        # else:
        # plt.subplots_adjust(right=1.0)
        surge_afteraxes(cd)

    #
    # Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7)}  #, 'facecolor':'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7)}  #, 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
        # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall)
    else:
        add_custom_colorbar_ticks_to_axes(
            plotaxes, 'surface', [-5, -2.5, 0, 2.5, 5.0],
            ["-5.0", "-2.5", " 0", " 2.5", " 5.0"])
    # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd')
    # surge.add_surface_elevation(plotaxes,plot_type='contour')
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7)}  #, 'facecolor':'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7)}  #, 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.add_speed(plotaxes,
                    plot_type='contourf',
                    contours=speed_contours,
                    shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)
    # surge.add_surface_elevation(plotaxes,plot_type='contour')
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ========================================================================
    #  Houston/Galveston
    # ========================================================================
    houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)]
    houston_ylimits = [29.1, 29.0 + 55.0 / 60.0]
    houston_shrink = 0.9

    def houston_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.05, bottom=0.07, right=0.99, top=0.92)
        else:
            plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        # surge.gauge_locations(cd)

    #
    # Surface Elevations
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    # if article:
    #     plotfigure.kwargs['figsize'] =

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=houston_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)
    surge.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    # surge.add_bathy_contours(plotaxes)

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes

    surge.add_speed(plotaxes,
                    plot_type='contourf',
                    contours=speed_contours,
                    shrink=houston_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)
    surge.add_land(plotaxes)
    # surge.add_bathy_contours(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ==========================
    #  Hurricane Forcing fields
    # ==========================

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink)
    surge.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.add_wind(plotaxes,
                   bounds=wind_limits,
                   plot_type='pcolor',
                   shrink=gulf_shrink)
    surge.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):

        if cd.gaugeno in [1, 2, 3, 4]:
            axes = plt.gca()
            # Add Kennedy gauge data
            kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]]
            axes.plot(kennedy_gauge['t'] -
                      seconds2days(date2seconds(gauge_landfall[0])),
                      kennedy_gauge['mean_water'] + kennedy_gauge['depth'],
                      'k-',
                      label='Gauge Data')

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(seconds2days(geoclaw_gauge.t -
                                   date2seconds(gauge_landfall[1])),
                      geoclaw_gauge.q[3, :] + gauge_surface_offset[0],
                      'b--',
                      label="GeoClaw")

            # Add ADCIRC gauge data
            ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']]
            axes.plot(seconds2days(ADCIRC_gauge[:, 0] - gauge_landfall[2]),
                      ADCIRC_gauge[:, 1] + gauge_surface_offset[1],
                      'r-.',
                      label="ADCIRC")

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2, 1])
            axes.set_ylim([-1, 5])
            axes.set_xticks([-2, -1, 0, 1])
            axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        # surge.gauge_afteraxes(cd)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = [-95.5, -94]
    gauge_ylimits = [29.0, 30.0]
    gauge_location_shrink = 0.75

    def gauge_after_axes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        surge.gauge_locations(cd, gaugenos=[1, 2, 3, 4])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes

    surge.add_surface_elevation(plotaxes,
                                plot_type='contourf',
                                contours=surface_contours,
                                shrink=gauge_location_shrink)
    # surge.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                      surface_labels)
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ==============================================================
    #  Debugging Plots, only really work if using interactive plots
    # ==============================================================
    #
    # Water Velocity Components
    #
    plotfigure = plotdata.new_plotfigure(
        name='Velocity Components - Entire Domain',
        figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # X-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.title = 'Velocity, X-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.water_u
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    surge.add_land(plotaxes)

    # Y-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.title = 'Velocity, Y-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.water_v
    plotitem.pcolor_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    surge.add_land(plotaxes)

    #
    # Depth
    #
    plotfigure = plotdata.new_plotfigure(name='Depth - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'depth'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = 0
    plotitem.imshow_cmap = colormaps.make_colormap({
        1.0: 'r',
        0.5: 'w',
        0.0: 'b'
    })
    plotitem.imshow_cmin = 0
    plotitem.imshow_cmax = 100
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 1, 1, 1, 1]

    # Surge field
    plotfigure = plotdata.new_plotfigure(name='Surge Field',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = ((surge_data.wind_forcing or surge_data.pressure_forcing)
                       and False)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Storm Surge Source Term S"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.pressure_field + 1
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 0, 0]

    surge.add_land(plotaxes)

    plotfigure = plotdata.new_plotfigure(name='Friction/Coriolis Source',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Friction/Coriolis Source"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.pressure_field + 2
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1, 1, 1, 0, 0]

    surge.add_land(plotaxes)

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = [54, 60, 66, 72, 78,
                                   84]  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = [4, 5, 6, 7, 10, 3,
                                 300]  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = False  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    else:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = 'all'  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = 'all'  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = True  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
예제 #3
0
파일: setplot.py 프로젝트: maojrs/apps
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data

    fig_num_counter = surge.plot.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = surge.data.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = surge.data.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surge.plot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2013, 10, 5, 0) - datetime.datetime(
        2013, 1, 1, 0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.plot.surge_afteraxes(
        cd, track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]

    wind_limits = [0, 64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.plot.gauge_locations(current_data,gaugenos=[6])

    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]]
    gulf_shrink = 0.9

    def gulf_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)

    #
    #  Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    surge.plot.add_surface_elevation(plotaxes,
                                     plot_type='contourf',
                                     contours=surface_contours,
                                     shrink=gulf_shrink)
    surge.plot.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)
    # surge.plot.add_bathy_contours(plotaxes)
    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                          surface_labels)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        1, 1, 1, 1, 1, 1, 1, 1
    ]

    #
    #  Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    # Speed
    surge.plot.add_speed(plotaxes,
                         plot_type='contourf',
                         contours=speed_contours,
                         shrink=gulf_shrink)
    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)

    # Land
    surge.plot.add_land(plotaxes)
    surge.plot.add_bathy_contours(plotaxes)

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and True

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.plot.add_friction(plotaxes, bounds=friction_bounds, shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    # ========================================================================
    #  LaTex Shelf
    # ========================================================================
    latex_xlimits = [-97.5, -88.5]
    latex_ylimits = [27.5, 30.5]
    latex_shrink = 1.0

    def latex_after_axes(cd):
        if article:
            plt.subplots_adjust(left=0.07, bottom=0.14, right=1.0, top=0.86)
        else:
            plt.subplots_adjust(right=1.0)
        surge_afteraxes(cd)

    #
    # Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7), 'facecolor': 'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7), 'facecolor': 'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.plot.add_surface_elevation(plotaxes,
                                     plot_type='contourf',
                                     contours=surface_contours,
                                     shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['surface'].add_colorbar = False
        # plotaxes.afteraxes = lambda cd: article_latex_after_axes(cd, landfall)
    else:
        add_custom_colorbar_ticks_to_axes(
            plotaxes, 'surface', [-5, -2.5, 0, 2.5, 5.0],
            ["-5.0", "-2.5", " 0", " 2.5", " 5.0"])
    # plotaxes.plotitem_dict['surface'].contour_cmap = plt.get_cmap('OrRd')
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surge.plot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    if article:
        plotfigure.kwargs = {'figsize': (8, 2.7), 'facecolor': 'none'}
    else:
        plotfigure.kwargs = {'figsize': (9, 2.7), 'facecolor': 'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes

    surge.plot.add_speed(plotaxes,
                         plot_type='contourf',
                         contours=speed_contours,
                         shrink=latex_shrink)

    if article:
        plotaxes.plotitem_dict['speed'].add_colorbar = False
    else:
        add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                          speed_labels)
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surge.plot.add_land(plotaxes)
    # plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,0,0,0,0,0]
    # plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ==========================
    #  Hurricane Forcing fields
    # ==========================

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.pressure_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.plot.add_pressure(plotaxes,
                            bounds=pressure_limits,
                            shrink=gulf_shrink)
    surge.plot.add_land(plotaxes)

    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.wind_forcing and True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True

    surge.plot.add_wind(plotaxes,
                        bounds=wind_limits,
                        plot_type='pcolor',
                        shrink=gulf_shrink)
    surge.plot.add_land(plotaxes)

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True
    plotfigure.kwargs['figsize'] = (16, 10)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    # plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = [-95.5, -94]
    gauge_ylimits = [29.0, 30.0]
    gauge_location_shrink = 0.75

    def gauge_after_axes(cd):
        # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        surge.plot.gauge_locations(cd, gaugenos=[1, 2, 3, 4])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes

    surge.plot.add_surface_elevation(plotaxes,
                                     plot_type='contourf',
                                     contours=surface_contours,
                                     shrink=gauge_location_shrink)
    # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                      surface_labels)
    surge.plot.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = [54, 60, 66, 72, 78,
                                   84]  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = [4, 5, 6, 7, 10, 3,
                                 300]  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = False  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    else:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = 'all'  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3, 4]  # list of gauges to print
        plotdata.print_fignos = 'all'  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = True  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
예제 #4
0
def setplot(plotdata):
    #--------------------------
    """
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of clawpack.visclaw.data.ClawPlotData.
    Output: a modified version of plotdata.

    """

    from clawpack.visclaw import colormaps, geoplot
    from numpy import linspace

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'
    #plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))

    ocean_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    ocean_ylimits = [clawdata.lower[1], clawdata.upper[1]]

    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))

    probdata = clawutil.ClawData()

    #probdata.read('setprob.data', force=True)
    #theta_island = probdata.theta_island

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    def mynewafteraxes(current_data):
        addgauges(current_data)
        bigfont(current_data)

    #-----------------------------------------
    # Some global KML settings
    #-----------------------------------------
    #plotdata.kml_publish = 'http://math.boisestate.edu/~calhoun/visclaw/GoogleEarth/kmz/' #public html
    plotdata.kml_publish = None
    plotdata.kml_name = "NYC Asteroid"  # name appears in Google Earth display only
    plotdata.kml_index_fname = "NYC_Asteroid"  # name for .kmz and .kml files ["_GoogleEarth"]

    # specify beginning of slider time. if not used, assumes Jan. 1 1970
    plotdata.kml_starttime = [2115, 4, 29, 7, 32,
                              0]  # Asteroid hits at 1:32AM, 4/29/2115 (UTC)
    plotdata.kml_tz_offset = 6  # off set to UTC
    # for todays date as the default use

    kml_cmin = -0.005  #colorbar min and max
    kml_cmax = 0.005
    kml_dpi = 400  # only used if individual figures dpi not set
    kml_cmap = geoplot.googleearth_lightblue

    #    kml_cmap = geoplot.googleearth_darkblue
    #    kml_cmap = geoplot.googleearth_transparent
    #    kml_cmap = geoplot.googleearth_white

    def kml_colorbar(filename):
        #cmin = -0.01
        #cmax = 0.01
        geoplot.kml_build_colorbar(filename, kml_cmap, kml_cmin, kml_cmax)

    #-----------------------------------------
    # Figure for pcolor plot for surface
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='pcolor', figno=0)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    #plotaxes.afteraxes = addgauges

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.show = True
    #plotitem.plot_var = geoplot.surface
    plotitem.plot_var = geoplot.surface_or_depth
    #plotitem.plot_var = 0/1/2 or plot that entry into q instead of a function
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    plotitem.pcolor_cmin = -.8
    plotitem.pcolor_cmax = .8
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.show = True
    # plotitem.pcolor_cmap = colormaps.all_white  # to print better in B&W
    plotitem.pcolor_cmap = geoplot.land_colors
    #plotitem.pcolor_cmap = geoplot.googleearth_transparent
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0, 0, 0]
    #plotitem.patchedges_show = 1
    plotitem.amr_patchedges_show = [0, 0, 0]
    #plotaxes.xlimits = [-85,-55]
    #plotaxes.ylimits = [25,45]
    plotaxes.xlimits = ocean_xlimits
    plotaxes.ylimits = ocean_ylimits
    #plotaxes.xlimits = [-75,-70]
    #plotaxes.ylimits = [38,43]

    # add contour lines of bathy if desired:
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = True
    plotitem.plot_var = geoplot.topo
    #plotitem.contour_levels = [-500,-250,-100, -50, 0, 50]
    plotitem.contour_levels = linspace(-1000, -400, 3)
    plotitem.amr_contour_colors = ['g']  # color on each level
    #plotitem.kwargs = {'linestyles':'dashed','linewidths':2,'colors' : 'red' }
    plotitem.kwargs = {
        'linestyles': 'dashed',
        'linewidths': 1,
        'colors': 'magenta'
    }
    plotitem.amr_contour_show = [1, 1, 1]
    plotitem.celledges_show = 0
    plotitem.patchedges_show = 0

    #-----------------------------------------------------------
    # Figure for KML files - Sea Surface Height
    #----------------------------------------------------------
    #plotfigure = plotdata.new_plotfigure(name='Sea Surface',figno=1)
    #plotfigure.show = True

    #plotfigure.use_for_kml = True
    #plotfigure.kml_use_for_initial_view = True

    # These overide any values set in the plotitems below
    #plotfigure.kml_xlimits = [-80,-55]
    #plotfigure.kml_ylimits = [25, 45]

    # Resolution
    #plotfigure.kml_dpi = 300
    #plotfigure.kml_tile_images = False

    def kml_colorbar_transparent(filename):
        #cmin = -0.01
        #cmax = 0.01
        geoplot.kml_build_colorbar(filename, geoplot.googleearth_transparent,
                                   kml_cmin, kml_cmax)

    #plotfigure.kml_colorbar = kml_colorbar_transparent

    # Set up for axes in this figure:
    #plotaxes = plotfigure.new_plotaxes('kml')
    #plotaxes.scaled = True

    # Water
    #plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    #plotitem.show = True
    #plotitem.plot_var = geoplot.surface_or_depth
    #plotitem.pcolor_cmap = geoplot.googleearth_transparent
    #plotitem.pcolor_cmin = kml_cmin
    #plotitem.pcolor_cmax = kml_cmax
    #plotitem.amr_celledges_show = [0,0,0]
    #plotitem.patchedges_show = 0

    #plotfigure.kml_colorbar = kml_colorbar

    #-----------------------------------------
    # Figure for speeds
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Speeds', figno=10)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Speed'
    plotaxes.scaled = True

    #def fixup(current_data):
    #    import pylab
    #    addgauges(current_data)
    #    t = current_data.t
    #    t = t / 3600.  # hours
    #    pylab.title('Speed at %4.2f hours' % t, fontsize=20)
    #    pylab.xticks(fontsize=15)
    #    pylab.yticks(fontsize=15)
    #plotaxes.afteraxes = fixup

    def speed(current_data):
        from pylab import where, sqrt
        q = current_data.q
        h = q[0, :]
        dry_tol = 0.001
        u = q[1, :]  # this is just to initialize
        v = q[2, :]  # to correct size
        s = 0 * q[2, :]  # to correct size

        nq = len(q[1, :])
        [n, m] = h.shape
        for ii in range(0, n):
            for jj in range(0, m):
                if h[ii, jj] > dry_tol:
                    u[ii, jj] = q[1, ii, jj] / h[ii, jj]
                    v[ii, jj] = q[2, ii, jj] / h[ii, jj]
                    s[ii,
                      jj] = sqrt(u[ii, jj] * u[ii, jj] + v[ii, jj] * v[ii, jj])
                else:
                    u[ii, jj] = 0.
                    v[ii, jj] = 0.
                    s[ii, jj] = 0
        #print("max of u = " + str(max(u)))

        #u = where(h>dry_tol, q[1,:]/h, 0.)
        #v = where(h>dry_tol, q[2,:]/h, 0.)
        #s = sqrt(u**2 + v**2)
        #s = sqrt(u*2+v*v) #try not dividing or using where
        return s

    # Water
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.show = False
    plotitem.plot_var = speed
    plotitem.pcolor_cmap = geoplot.tsunami_colormap
    #plotitem.pcolor_cmap = \
    #       colormaps.make_colormap({0:[1,1,1],0.5:[0.5,0.5,1],1:[1,0.3,0.3]})
    plotitem.pcolor_cmin = 0.
    plotitem.pcolor_cmax = .10
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    #plotitem.patchedges_show = 1
    plotitem.amr_patchedges_show = [0, 0, 0]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 100.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.patchedges_show = 0
    plotaxes.xlimits = ocean_xlimits
    plotaxes.ylimits = ocean_ylimits

    #-----------------------------------------
    # Figure for zoom around NYC
    #-----------------------------------------
    zoomWanted = True
    if zoomWanted:
        plotfigure = plotdata.new_plotfigure(name='Zoom1', figno=7)

        # add another figure
        #plotfigure.use_for_kml = True
        #plotfigure.kml_use_for_initial_view = False

        # These overide any values set in the plotitems below
        #plotfigure.kml_xlimits =  [-74.5, -73.5]
        #plotfigure.kml_ylimits = [40.4,40.9]

        # Resolution
        #plotfigure.kml_dpi = 300
        #plotfigure.kml_tile_images = True

        #plotfigure.kml_colorbar = kml_colorbar   # defined above

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes('zoom on nyc')
        plotaxes.title = 'Surface elevation'
        plotaxes.scaled = True
        manhattan_island = -73.5
        xisland, yisland = latlong(1600e3, manhattan_island, 40., Rearth)
        #plotaxes.xlimits = [xisland-0.6, xisland+0.6]
        #plotaxes.xlimits = [manhattan_island-1, manhattan_island+1]
        #plotaxes.ylimits = [40.15,41.5]
        plotaxes.xlimits = [-74.5, -72.5]  # really zoom in on lower manhattan]
        plotaxes.ylimits = [40.25, 41.5]
        plotaxes.afteraxes = addgauges

        def bigfont(current_data):
            import pylab
            t = current_data.t
            pylab.title("Surface at t = %8.1f" % t, fontsize=20)
            pylab.xticks(fontsize=15)
            pylab.yticks(fontsize=15)

        #plotaxes.afteraxes = bigfont
        #plotaxes.afteraxes = mynewafteraxes   # after axes functions mess with GE plots

        # Water
        plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
        plotitem.show = False
        #plotitem.plot_var = geoplot.surface
        plotitem.plot_var = geoplot.surface_or_depth
        #plotitem.pcolor_cmap = geoplot.tsunami_colormap
        plotitem.pcolor_cmap = kml_cmap
        #plotitem.pcolor_cmin = kml_cmin   # same as above
        #plotitem.pcolor_cmax = kml_cmax
        plotitem.pcolor_cmin = -.2
        plotitem.pcolor_cmax = .2
        plotitem.add_colorbar = True
        plotitem.amr_celledges_show = [0, 0, 0]
        plotitem.patchedges_show = 0

        # Land
        plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
        plotitem.show = False
        plotitem.plot_var = geoplot.land
        # plotitem.pcolor_cmap = colormaps.all_white  # to print better in B&W
        plotitem.pcolor_cmap = geoplot.land_colors
        plotitem.pcolor_cmin = 0.0
        plotitem.pcolor_cmax = 100.0
        plotitem.add_colorbar = False
        plotitem.amr_celledges_show = [0, 0, 0, 0, 0]
        plotitem.patchedges_show = 0

        # contour lines:
        plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
        plotitem.show = False
        plotitem.plot_var = geoplot.surface
        plotitem.contour_levels = [-0.8, -0.4, 0.4, 0.8]
        plotitem.amr_contour_colors = ['k']  # color on each level
        plotitem.kwargs = {'linewidths': 1}
        plotitem.amr_contour_show = [0, 0, 0, 1, 1]
        plotitem.celledges_show = 0
        plotitem.patchedges_show = 0

        # add contour lines of bathy if desired:
        plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
        plotitem.show = False
        plotitem.plot_var = geoplot.topo
        plotitem.contour_levels = linspace(-30, -10, 3)
        plotitem.amr_contour_colors = ['m']  # color on each level
        plotitem.kwargs = {'linestyles': 'dashed', 'linewidths': 1}
        plotitem.amr_contour_show = [1, 1, 1]
        plotitem.celledges_show = 0
        plotitem.patchedges_show = 0

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    #plotaxes.xlimits = [0000, 6500]
    #plotaxes.ylimits = [-.10, .15]
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    #plotitem = plotaxes.new_plotitem(plot_type='1d_plot')

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    def gaugedpress(current_data):
        q = current_data.q
        #dpress = (q[4,:] - 101300)/101300
        dpress = q[4, :]  # already output as relative:  dp/amb_pr
        return dpress

    def gs(current_data):
        q = current_data.q
        # different than speed function because q is function of time, not
        # x,y at the gauges.
        from numpy import where, sqrt
        h = q[0, :]
        #print('shape of h ' +  str(h.shape))
        dry_tol = 0.001
        u = where(h > dry_tol, q[1, :] / h, 0.)
        v = where(h > dry_tol, q[2, :] / h, 0.)
        ssq = sqrt(u * u + v * v)
        #s = sqrt(u**2 + v**2)
        s = sqrt(ssq)
        return ssq

    #plotitem.plot_var = gaugetopo
    #plotitem.plotstyle = 'g-'

    # Plot relative delta pressure as red curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = gaugedpress
    plotitem.plotstyle = 'r-'

    # add speed to this plot since cant get new one going
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = gs
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend
        t = current_data.t
        #       legend(('surface','topography','dp'),loc='lower left')
        legend(('surface', 'dp', 'speed'), loc='upper right')
        #plot(t, 0*t, 'k')

    plotaxes.afteraxes = add_zeroline

    # -------------------------------
    # Figure for speed at gauges
    #--------------------------------

    #    plotfigure = plotdata.new_plotfigure(name='Speed at gauges', figno=310, \
    #                    type='each_gauge')
    #

    #
    #    # Set up for axes in this figure:
    #    plotaxes = plotfigure.new_plotaxes()
    #    plotaxes.xlimits = 'auto'
    #    plotaxes.ylimits = 'auto'
    #    #plotaxes.xlimits = [0000, 7000]
    #    #plotaxes.ylimits = 'auto'
    #    plotaxes.title = 'Speed'
    #
    #    # Plot surface as blue curve:
    #    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    #    #plotitem.plot_var = speed
    #    plotitem.plot_var = gs  #gauge_speed
    #    plotitem.plotstyle = 'b-'
    #
    #    plotfigure.show = True
    #

    #-----------------------------------------
    # Figure for bathy alone
    #-----------------------------------------
    def bathy(current_data):
        return current_data.aux[0, :, :]

    plotfigure = plotdata.new_plotfigure(name='bathymetry', figno=3)
    plotaxes = plotfigure.new_plotaxes('pcolor')
    plotaxes.title = 'Bathymetry'
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = bathy
    plotitem.pcolor_cmin = -3000.00
    plotitem.pcolor_cmax = 500
    plotitem.add_colorbar = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.show = False
    plotitem.plot_var = geoplot.topo
    plotitem.contour_levels = linspace(-2000, 2000, 21)
    plotitem.amr_contour_colors = ['k']  # color on each level

    #plotitem.contour_levels = [-1000 -500,-250,-100, -5, 5]

    #-----------------------------------------
    # Figure for grids alone
    #-----------------------------------------
    #plotfigure = plotdata.new_plotfigure(name='grids', figno=2)
    #plotfigure.show = False

    # Set up for axes in this figure:
    #plotaxes = plotfigure.new_plotaxes()
    #plotaxes.xlimits = [0,1]
    #plotaxes.ylimits = [0,1]
    #plotaxes.title = 'grids'
    #plotaxes.scaled = True

    # Set up for item on these axes:
    #plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    #plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    #plotitem.amr_celledges_show = [0,0,0]
    #plotitem.amr_patchedges_show = [0,0,0]

    def normalized_pressure(current_data):
        pressure_index = 6  #7 in fortran, but python is 0 based
        return current_data.aux[
            pressure_index, :, :] / surge_data.ambient_pressure

    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure', figno=33)
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes('normalized_pressure')
    plotaxes.xlimits = ocean_xlimits
    plotaxes.ylimits = ocean_ylimits
    plotaxes.title = 'Pressure Field'
    plotaxes.scaled = True
    plotaxes.afteraxes = addgauges

    pressure_limits = [.99, 1.10]
    #pressure_limits = [.999*surge_data.ambient_pressure / 100.0,
    #                   1.001 * surge_data.ambient_pressure / 100.0]
    #pressure_limits = [-.000001*surge_data.ambient_pressure,
    #                   .000001 * surge_data.ambient_pressure]

    surgeplot.add_pressure(plotaxes, bounds=pressure_limits)
    surgeplot.add_land(plotaxes)

    #plotitem = plotaxes.new_plotitem(plot_type='2d_patch')
    plotitem = plotaxes.plotitem_dict['pressure']
    plotitem.show = False
    plotitem.plot_var = normalized_pressure
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [0, 0, 0]

    plotaxes.plotitem_dict['land'].amr_celledges_show = [0, 0, 0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0]

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via clawpack.visclaw.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    #plotdata.print_framenos = [30,50,70]          # list of frames to print
    #plotdata.print_framenos = [1]          # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    #plotdata.print_fignos = [0,7,10,33,300]  # list of figures to print
    #plotdata.print_fignos = [0,7,10,300]  # list of figures to print
    plotdata.print_fignos = [0, 300]  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    plotdata.kml = False

    return plotdata
예제 #5
0
def setplot(plotdata=None):
    #--------------------------
    """ 
    Specify what is to be plotted at each frame.
    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    """

    import os

    import numpy as np
    import matplotlib.pyplot as plt

    from clawpack.visclaw import geoplot, gaugetools, colormaps

    import clawpack.clawutil.data as clawutil
    import clawpack.amrclaw.data as amrclaw
    import clawpack.geoclaw.data

    import clawpack.geoclaw.multilayer.plot as ml_plot

    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()

    from numpy import linspace

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.save_frames = False

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    geodata = clawpack.geoclaw.data.GeoClawData()
    geodata.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    # To plot gauge locations on pcolor or contour plot, use this as
    # an afteraxis function:

    def addgauges(current_data):
        from clawpack.visclaw import gaugetools
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos='all', format_string='ko', add_labels=True)

    # ========================================================================
    #  Generic helper functions
    # ========================================================================
    def pcolor_afteraxes(current_data):
        # bathy_ref_lines(current_data)
        gauge_locations(current_data)

    def contour_afteraxes(current_data):
        # gauge_locations(current_data)
        # m_to_km_labels()
        plt.hold(True)
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        plt.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                 [-300e3, 300e3], 'y')
        plt.hold(False)
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def gauge_locations(current_data, gaugenos='all'):
        plt.hold(True)
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos=gaugenos, format_string='kx', add_labels=True)
        plt.hold(False)

    # ========================================================================
    # Axis limits
    # xlimits = [amrdata.xlower,amrdata.xupper]
    xlimits = [-100.0, 100.0]

    # ylimits = [amrdata.ylower,amrdata.yupper]
    ylimits = [-100.0, 100.0]

    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]

    top_surface_limits = [eta[0] - 10, eta[0] + 10]
    internal_surface_limits = [eta[1] - 5, eta[1] + 5]
    depth_limits = [0.0, 0.4]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # ========================================================================
    #  Surface Elevations
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    ml_plot.add_inundation(plotaxes, 1, bounds=depth_limits)
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    ml_plot.add_inundation(plotaxes, 2, bounds=depth_limits)
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    ml_plot.add_colorbar = True
    ml_plot.add_land(plotaxes, 2)

    # ========================================================================
    # Figure for cross section
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='cross-section', figno=4)
    plotfigure.show = True
    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.title = 'Cross section at y=0'
    ml_plot.add_cross_section(plotaxes, 1)
    ml_plot.add_cross_section(plotaxes, 2)
    ml_plot.add_land_cross_section(plotaxes)

    # ========================================================================
    #  Water Speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,1)'
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    ml_plot.add_land(plotaxes, 2)

    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 14)}

    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    ml_plot.add_x_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    ml_plot.add_y_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes, 1)

    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    ml_plot.add_x_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes, 2)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    ml_plot.add_y_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes, 2)

    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface at gauges', figno=300, \
                    type='each_gauge')
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = 'auto'
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # Plot topo as green curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.show = False

    def gaugetopo(current_data):
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        topo = eta - h
        return topo

    plotitem.plot_var = gaugetopo
    plotitem.plotstyle = 'g-'

    def add_zeroline(current_data):
        from pylab import plot, legend, xticks, floor, axis, xlabel
        t = current_data.t
        gaugeno = current_data.gaugeno

        if gaugeno == 32412:
            try:
                plot(TG32412[:, 0], TG32412[:, 1], 'r')
                legend(['GeoClaw', 'Obs'], loc='lower right')
            except:
                pass
            axis((0, t.max(), -0.3, 0.3))

        plot(t, 0 * t, 'k')
        n = int(floor(t.max() / 3600.) + 2)
        xticks([3600 * i for i in range(n)], ['%i' % i for i in range(n)])
        xlabel('time (hours)')

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex = True  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?
    plotdata.parallel = True  # make multiple frame png's at once

    return plotdata
예제 #6
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'ascii'

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))

    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))

    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))

    surge_data = surgedata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))

    friction_data = surgedata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008, 9, 13, 7) - datetime.datetime(
        2008, 1, 1, 0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [eta[0] - surface_range, eta[0] + surface_range]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]

    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)

    wind_limits = [0, 64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]
    # vorticity_limits = [-1.e-2,1.e-2]

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    #-----------------------------------------
    # Some global kml flags
    #-----------------------------------------
    plotdata.kml_name = "Ike"
    plotdata.kml_starttime = [2008, 9, 3, 15, 0,
                              0]  # Time of event in UTC [None]
    plotdata.kml_tz_offset = 5  # Time zone offset (in hours) of event. [None]

    plotdata.kml_index_fname = "Ike"  # name for .kmz and .kml files ["_GoogleEarth"]

    # Set to path where KMZ files will be stored;   KML file will then
    # link to this path.
    # plotdata.kml_publish = 'http://www.domain.edu/path/to/kmz/files'

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1], clawdata.upper[1]]
    gulf_shrink = 1.0

    # --------------------------
    #  Surface - entire gulf
    # --------------------------

    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain',
                                         figno=0)
    plotfigure.show = True

    plotfigure.use_for_kml = True
    plotfigure.kml_use_for_initial_view = True

    # These override axes limits set below in plotitems
    plotfigure.kml_xlimits = gulf_xlimits
    plotfigure.kml_ylimits = gulf_ylimits

    # Resolution - needs to be set carefully for the transparent colormap
    rcl = 40
    plotfigure.kml_dpi = rcl * 2
    plotfigure.kml_figsize = [11.6, 9.6]
    plotfigure.kml_tile_images = False  # Tile images for faster loading.  Requires GDAL [False]

    plotaxes = plotfigure.new_plotaxes()
    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_pcolor')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.pcolor_cmap = geoplot.googleearth_transparent
    plotitem.pcolor_cmin = -surface_range
    plotitem.pcolor_cmax = surface_range

    def kml_colorbar(filename):
        cmin = -surface_range
        cmax = surface_range
        geoplot.kml_build_colorbar(filename, geoplot.googleearth_transparent,
                                   cmin, cmax)

    plotfigure.kml_colorbar = kml_colorbar

    # --------------------------
    #  Water Speed - entire gulf
    # --------------------------
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',
                                         figno=1)
    plotfigure.show = True

    plotfigure.use_for_kml = True
    plotfigure.kml_use_for_initial_view = False

    # These override axes limits set below in plotitems
    plotfigure.kml_xlimits = gulf_xlimits
    plotfigure.kml_ylimits = gulf_ylimits
    plotfigure.kml_figsize = [11.6, 9.6]
    plotfigure.kml_dpi = 80  # size not so important with contourf
    plotfigure.kml_tile_images = False  # Tile images for faster loading.  Requires GDAL [False]

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()

    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.contour_levels = speed_contours
    plotitem.fill_cmin = min(speed_contours)
    plotitem.fill_cmax = max(speed_contours)

    cmap = plt.get_cmap('OrRd')
    cmap._rgba_under = (0.0, 0.0, 0.0, 0.0)
    plotitem.fill_cmap = cmap

    def cbar_speeds(filename):
        cmin = min(speed_contours)
        cmax = max(speed_contours)
        geoplot.kml_build_colorbar(filename, cmap, cmin, cmax)

    plotfigure.kml_colorbar = cbar_speeds

    # ========================================================================
    #  Houston/Galveston
    # ========================================================================
    houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)]
    houston_ylimits = [29.1, 29.0 + 55.0 / 60.0]
    houston_shrink = 0.9

    #No need to worry about fitting the plot exactly if we are not using
    # the transparent colormap with pcolor.
    #num_cells = [116, 96]
    #dx = (gulf_xlimits[1] - float(gulf_xlimits[0]))/num_cells[0]   # = 0.25
    #dy = (gulf_ylimits[1] - float(gulf_ylimits[0]))/num_cells[1]   # = 0.25
    #houston_xlimits = [gulf_xlimits[0] + 14*dx, gulf_xlimits[0] + 21*dx]  # [-95.25, -94.5]
    #houston_ylimits = [gulf_ylimits[0] + 82*dy, gulf_ylimits[0] + 88*dy]  # [-95.25, -94.5]
    #figsize = [(21-14)*dx,(88-82)*dy]  # relative to [11.6, 9.6] occupied by larger grid

    figsize = [
        houston_xlimits[1] - houston_xlimits[0],
        houston_ylimits[1] - houston_ylimits[0]
    ]
    dpi = 400

    # --------------------------------------
    # Surface Elevations - Houston/Galveston
    # --------------------------------------
    plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston',
                                         figno=2)
    plotfigure.show = True
    plotfigure.use_for_kml = True

    plotfigure.kml_xlimits = houston_xlimits
    plotfigure.kml_ylimits = houston_ylimits
    plotfigure.kml_dpi = dpi  # data is not more resolve than this
    plotfigure.kml_figsize = figsize
    plotfigure.kml_tile_images = False

    # pcolor for water.
    plotaxes = plotfigure.new_plotaxes()
    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf')
    plotitem.contour_levels = surface_contours
    plotitem.fill_cmin = min(surface_contours)
    plotitem.fill_cmax = max(surface_contours)

    # what is the colormap used here?
    #plotfigure.kml_colorbar = cbar_houston

    # --------------------------------
    # Water Speed - Houston/Galveston
    # --------------------------------
    plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston',
                                         figno=3)
    plotfigure.show = True
    plotfigure.use_for_kml = True

    # These override axes limits set below in plotitems
    plotfigure.kml_xlimits = houston_xlimits
    plotfigure.kml_ylimits = houston_ylimits
    plotfigure.kml_figsize = figsize
    plotfigure.kml_dpi = dpi  # data is not more resolve than this
    plotfigure.kml_tile_images = False  # Tile images for faster loading.  Requires GDAL [False]

    # Water
    plotaxes = plotfigure.new_plotaxes()
    plotitem = plotaxes.new_plotitem(name='surface', plot_type='2d_contourf')
    plotitem.plot_var = geoplot.surface_or_depth
    plotitem.contour_levels = speed_contours
    plotitem.fill_cmin = min(speed_contours)
    plotitem.fill_cmax = max(speed_contours)

    cmap = plt.get_cmap('OrRd')
    cmap._rgba_under = (0.0, 0.0, 0.0, 0.0)
    plotitem.fill_cmap = cmap

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):

        if cd.gaugeno in [1, 2, 3, 4]:
            axes = plt.gca()
            # # Add Kennedy gauge data
            # kennedy_gauge = kennedy_gauges[gauge_name_trans[cd.gaugeno]]
            # axes.plot(kennedy_gauge['t'] - seconds2days(date2seconds(gauge_landfall[0])),
            #          kennedy_gauge['mean_water'] + kennedy_gauge['depth'], 'k-',
            #          label='Gauge Data')

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(seconds2days(geoclaw_gauge.t -
                                   date2seconds(gauge_landfall[1])),
                      geoclaw_gauge.q[3, :] + gauge_surface_offset[0],
                      'b--',
                      label="GeoClaw")

            # Add ADCIRC gauge data
            # ADCIRC_gauge = ADCIRC_gauges[kennedy_gauge['gauge_no']]
            # axes.plot(seconds2days(ADCIRC_gauge[:,0] - gauge_landfall[2]),
            #          ADCIRC_gauge[:,1] + gauge_surface_offset[1], 'r-.', label="ADCIRC")

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2, 1])
            axes.set_ylim([-1, 5])
            axes.set_xticks([-2, -1, 0, 1])
            axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        surgeplot.gauge_afteraxes(cd)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    #plotaxes.xlabel = "Days from landfall"
    #plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_gaugenos = 'all'  # list of gauges to print
    plotdata.print_fignos = [0, 1, 2, 3]  # list of figures to print
    plotdata.html_homelink = '../README.html'  # pointer for top of index
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    plotdata.html = False  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.kml = True

    return plotdata
예제 #7
0
def setplot(plotdata,
            bathy_location=0.15,
            bathy_angle=0.0,
            bathy_left=-1.0,
            bathy_right=-0.2):
    """Setup the plotting data objects.

    Input:  plotdata, an instance of pyclaw.plotters.data.ClawPlotData.
    Output: a modified version of plotdata.
    
    returns plotdata object

    """

    import os

    import numpy as np
    import matplotlib.pyplot as plt

    from clawpack.visclaw import geoplot, gaugetools

    import clawpack.clawutil.data as clawutil
    import clawpack.amrclaw.data as amrclaw
    import clawpack.geoclaw.data

    import clawpack.geoclaw.multilayer.plot as ml_plot

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    geodata = clawpack.geoclaw.data.GeoClawData()
    geodata.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    multilayer_data = clawpack.geoclaw.data.MultilayerData()
    multilayer_data.read(os.path.join(plotdata.outdir, 'multilayer.data'))

    def transform_c2p(x, y, x0, y0, theta):
        return ((x + x0) * np.cos(theta) - (y + y0) * np.sin(theta),
                (x + x0) * np.sin(theta) + (y + y0) * np.cos(theta))

    def transform_p2c(x, y, x0, y0, theta):
        return (x * np.cos(theta) + y * np.sin(theta) - x0,
                -x * np.sin(theta) + y * np.cos(theta) - y0)

    # Setup bathymetry reference lines
    with open(os.path.join(plotdata.outdir, "bathy_geometry.data"),
              'r') as bathy_geometry_file:
        bathy_location = float(bathy_geometry_file.readline())
        bathy_angle = float(bathy_geometry_file.readline())
    x = [0.0, 0.0]
    y = [0.0, 1.0]
    x1, y1 = transform_c2p(x[0], y[0], bathy_location, 0.0, bathy_angle)
    x2, y2 = transform_c2p(x[1], y[1], bathy_location, 0.0, bathy_angle)

    if abs(x1 - x2) < 10**-3:
        x = [x1, x1]
        y = [clawdata.lower[1], clawdata.upper[1]]
    else:
        m = (y1 - y2) / (x1 - x2)
        x[0] = (clawdata.lower[1] - y1) / m + x1
        y[0] = clawdata.lower[1]
        x[1] = (clawdata.upper[1] - y1) / m + x1
        y[1] = clawdata.upper[1]
    ref_lines = [((x[0], y[0]), (x[1], y[1]))]

    plotdata.clearfigures()

    plotdata.save_frames = False

    # ========================================================================
    #  Generic helper functions
    # ========================================================================
    def pcolor_afteraxes(current_data):
        bathy_ref_lines(current_data)
        gauge_locations(current_data)

    def contour_afteraxes(current_data):
        # gauge_locations(current_data)
        # m_to_km_labels()
        plt.hold(True)
        pos = -80.0 * (23e3 / 180) + 500e3 - 5e3
        plt.plot([pos, pos], [-300e3, 300e3], 'b', [pos - 5e3, pos - 5e3],
                 [-300e3, 300e3], 'y')
        plt.hold(False)
        wind_contours(current_data)
        bathy_ref_lines(current_data)

    def profile_afteraxes(current_data):
        pass

    def bathy_ref_lines(current_data):
        plt.hold(True)
        for ref_line in ref_lines:
            x1 = ref_line[0][0]
            y1 = ref_line[0][1]
            x2 = ref_line[1][0]
            y2 = ref_line[1][1]
            plt.plot([x1, x2], [y1, y2], 'y--', linewidth=1)
        plt.hold(False)

    def gauge_locations(current_data, gaugenos='all'):
        plt.hold(True)
        gaugetools.plot_gauge_locations(current_data.plotdata, \
             gaugenos=gaugenos, format_string='kx', add_labels=True)
        plt.hold(False)

    # ========================================================================
    # Axis limits
    #xlimits = [amrdata.xlower,amrdata.xupper]
    xlimits = [-0.5, 0.5]
    #ylimits = [amrdata.ylower,amrdata.yupper]
    ylimits = [-0.5, 0.5]
    eta = [multilayer_data.eta[0], multilayer_data.eta[1]]
    top_surface_limits = [eta[0] - 0.03, eta[0] + 0.03]
    internal_surface_limits = [eta[1] - 0.015, eta[1] + 0.015]
    # top_surface_limits = [eta[0]-0.3,eta[0]+0.3]
    # internal_surface_limits = [eta[1]-0.15,eta[1]+0.15]
    top_speed_limits = [0.0, 0.1]
    internal_speed_limits = [0.0, 0.03]

    # Single layer test limits
    # top_surface_limits = [eta[0]-2.5,eta[0]+2.5]
    # top_speed_limits = [0.0,6.0]

    # ========================================================================
    #  Surface Elevations
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_surface_elevation(plotaxes, 1, bounds=top_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,1,bounds=[-0.06,0.06])
    # ml_plot.add_surface_elevation(plotaxes,1)
    ml_plot.add_land(plotaxes)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    # ml_plot.add_surface_elevation(plotaxes,2,bounds=[-300-0.5,-300+0.5])
    ml_plot.add_surface_elevation(plotaxes, 2, bounds=internal_surface_limits)
    # ml_plot.add_surface_elevation(plotaxes,2)
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Depths
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Depths', figno=42)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 1, bounds=[-0.1, 1.1])
    ml_plot.add_land(plotaxes)

    # Bottom surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Bottom Layer Depth'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes
    ml_plot.add_layer_depth(plotaxes, 2, bounds=[-0.1, 0.7])
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Water Speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = True
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Top layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Top Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,1,bounds=[0.00,0.2])
    ml_plot.add_speed(plotaxes, 1, bounds=top_speed_limits)
    # add_speed(plotaxes,1)
    ml_plot.add_land(plotaxes)

    # Bottom layer speed
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents - Bottom Layer'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_speed(plotaxes,2,bounds=[0.0,1e-10])
    ml_plot.add_speed(plotaxes, 2, bounds=internal_speed_limits)
    # add_speed(plotaxes,2)
    ml_plot.add_land(plotaxes)

    # Individual components
    plotfigure = plotdata.new_plotfigure(name='speed_components', figno=401)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 14)}

    # Top layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,1)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,1,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Top Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,2)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,1,bounds=[-0.000125,0.000125])
    ml_plot.add_y_velocity(plotaxes, 1)
    ml_plot.add_land(plotaxes)

    # Bottom layer
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "X-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,3)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_x_velocity(plotaxes,2,bounds=[-1e-10,1e-10])
    ml_plot.add_x_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = "Y-Velocity - Bottom Layer"
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.axescmd = 'subplot(2,2,4)'
    plotaxes.afteraxes = pcolor_afteraxes
    # add_y_velocity(plotaxes,2,bounds=[-0.8e-6,.8e-6])
    ml_plot.add_y_velocity(plotaxes, 2)
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Profile Plots
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='profile', figno=4)
    plotfigure.show = False

    # Top surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = [-2000, 20]
    plotaxes.title = "Profile of depth"
    plotaxes.afteraxes = profile_afteraxes

    slice_index = 30

    # Internal surface
    def bathy_profile(current_data):
        return current_data.x[:, slice_index], b(current_data)[:, slice_index]

    def lower_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:,
                                  slice_index], eta2(current_data)[:,
                                                                   slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], eta2(current_data)[
                slice_index, :]

    def upper_surface(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:,
                                  slice_index], eta1(current_data)[:,
                                                                   slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], eta1(current_data)[
                slice_index, :]

    def top_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index], water_u1(
                current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], water_u1(current_data)[
                slice_index, :]

    def bottom_speed(current_data):
        if multilayer_data.init_type == 2:
            return current_data.x[:, slice_index], water_u2(
                current_data)[:, slice_index]
        elif multilayer_data.init_type == 6:
            return current_data.y[slice_index, :], water_u2(current_data)[
                slice_index, :]

    # Bathy
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = bathy_profile
    plotitem.plot_var = 0
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'k'
    plotitem.show = True

    # Internal Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = lower_surface
    plotitem.plot_var = 7
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = 'b'
    plotitem.show = True

    # Upper Interface
    plotitem = plotaxes.new_plotitem(plot_type='1d_from_2d_data')
    plotitem.map_2d_to_1d = upper_surface
    plotitem.plot_var = 6
    plotitem.amr_plotstyle = ['-', '+', 'x']
    plotitem.color = (0.2, 0.8, 1.0)
    plotitem.show = True

    # ========================================================================
    #  Combined Profile Plot
    # ========================================================================
    # add_combined_profile_plot(plotdata,0.25,direction='y',figno=120)
    # add_combined_profile_plot(plotdata,0.8,direction='y',figno=121)
    #
    # add_velocities_profile_plot(plotdata,0.25,direction='y',figno=130)
    # add_velocities_profile_plot(plotdata,0.8,direction='y',figno=131)

    # ========================================================================
    #  Bathy Profile
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='bathy_profile', figno=20)
    plotfigure.show = False

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = xlimits
    plotaxes.title = "Bathymetry Profile"
    plotaxes.scaled = 'equal'

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = ml_plot.b
    plotitem.imshow_cmin = -4000
    plotitem.imshow_cmax = 10
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]
    plotitem.show = True

    # ========================================================================
    # Figures for momentum
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='x-momentum', figno=13)
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'X-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_u
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.show = True
    plotitem.plot_var = geoplot.land
    plotitem.pcolor_cmap = geoplot.land_colors
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 80.0
    plotitem.add_colorbar = False
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]

    plotfigure = plotdata.new_plotfigure(name='y-momentum', figno=14)
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Y-Velocity'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Water
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # # plotitem.plot_var = geoplot.surface
    # plotitem.plot_var = water_v
    # plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    # # plotitem.pcolor_cmin = -1.e-10
    # # plotitem.pcolor_cmax = 1.e-10
    # # plotitem.pcolor_cmin = -2.5 # -3.0
    # # plotitem.pcolor_cmax = 2.5 # 3.0
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1,1,1]

    # Land
    ml_plot.add_land(plotaxes)

    # ========================================================================
    #  Contour plot for surface
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_surface', figno=15)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:

    # Top Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = 'subplot(1,2,1)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=1,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, plot_type='contour')

    # Internal Surface
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Internal Surface'
    plotaxes.axescmd = 'subplot(1,2,2)'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes
    ml_plot.add_surface_elevation(plotaxes,
                                  plot_type='contour',
                                  surface=2,
                                  bounds=[-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
    ml_plot.add_land(plotaxes, plot_type='contour')

    # ========================================================================
    #  Contour plot for speed
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='contour_speed', figno=16)
    plotfigure.show = False
    plotfigure.kwargs = {'figsize': (14, 4)}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Current'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = contour_afteraxes

    # Surface
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = ml_plot.water_speed_depth_ave
    plotitem.kwargs = {'linewidths': 1}
    # plotitem.contour_levels = [1.0,2.0,3.0,4.0,5.0,6.0]
    plotitem.contour_levels = [0.5, 1.5, 3, 4.5, 6.0]
    plotitem.amr_contour_show = [1, 1, 1]
    plotitem.amr_celledges_show = [0, 0, 0]
    plotitem.amr_patchedges_show = [1, 1, 1]
    plotitem.amr_contour_colors = 'k'
    # plotitem.amr_contour_colors = ['r','k','b']  # color on each level
    # plotitem.amr_grid_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.show = True

    # Land
    plotitem = plotaxes.new_plotitem(plot_type='2d_contour')
    plotitem.plot_var = geoplot.land
    plotitem.contour_nlevels = 40
    plotitem.contour_min = 0.0
    plotitem.contour_max = 100.0
    plotitem.amr_contour_colors = ['g']  # color on each level
    plotitem.amr_patch_bgcolor = ['#ffeeee', '#eeeeff', '#eeffee']
    plotitem.amr_celledges_show = 0
    plotitem.amr_patchedges_show = 0
    plotitem.show = True

    # ========================================================================
    #  Vorticity Plot
    # ========================================================================
    # plotfigure = plotdata.new_plotfigure(name='vorticity',figno=17)
    # plotfigure.show = False
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.title = "Vorticity"
    # plotaxes.scaled = True
    # plotaxes.xlimits = xlimits
    # plotaxes.ylimits = ylimits
    # plotaxes.afteraxes = pcolor_afteraxes
    #
    # # Vorticity
    # plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    # plotitem.plot_var = 9
    # plotitem.imshow_cmap = plt.get_cmap('PRGn')
    # # plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    # # plotitem.pcolor_cmin = 0.0
    # # plotitem.pcolor_cmax = 6.0
    # plotitem.imshow_cmin = -1.e-2
    # plotitem.imshow_cmax = 1.e-2
    # plotitem.add_colorbar = True
    # plotitem.amr_celledges_show = [0,0,0]
    # plotitem.amr_patchedges_show = [1]
    #
    # # Land
    # plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    # plotitem.plot_var = geoplot.land
    # plotitem.pcolor_cmap = geoplot.land_colors
    # plotitem.pcolor_cmin = 0.0
    # plotitem.pcolor_cmax = 80.0
    # plotitem.add_colorbar = False
    # plotitem.amr_celledges_show = [0,0,0]

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    def plot_regression_gauges(cd, plot_var=(3, 7)):
        import clawpack.pyclaw.gauges as gauges
        import numpy

        fig = plt.gcf()
        gauge = gauges.GaugeSolution(cd.gaugeno, path="./regression_data")
        for (i, n) in enumerate(plot_var):
            fig.axes[i].plot(gauge.t, gauge.q[n, :], 'k-')

    # Top
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0.0, 1.0]
    # plotaxes.ylimits = top_surface_limits
    plotaxes.title = 'Top Surface'
    plotaxes.axescmd = "subplot(1, 2, 1)"

    # Plot surfaces:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'ro'

    # Bottom
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [0.0, 1.0]
    plotaxes.title = 'Bottom Surface'
    plotaxes.axescmd = "subplot(1, 2, 2)"
    plotaxes.afteraxes = plot_regression_gauges

    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 7
    plotitem.plotstyle = 'ro'

    # Plot topo as green curve:
    # plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.plot_var = geoplot.gaugetopo
    # plotitem.plotstyle = 'g+'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True  # print figures
    plotdata.print_format = 'png'  # file format
    plotdata.print_framenos = 'all'  # list of frames to print
    plotdata.print_fignos = 'all'  # list of figures to print
    plotdata.html = True  # create html files of plots?
    plotdata.latex = False  # create latex file of plots?
    plotdata.latex_figsperline = 2  # layout of plots
    plotdata.latex_framesperline = 1  # layout of plots
    plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
예제 #8
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""
    
    if plotdata is None:
        from clawpack.visclaw.data import ClawPlotData
        plotdata = ClawPlotData()


    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surgeplot.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir,'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir,'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir,'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir,'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir,'friction.data'))

    # Load storm track
    track = surgeplot.track_data(os.path.join(plotdata.outdir,'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008, 8, 1, 12) - datetime.datetime(2008,1,1,0)
    landfall = landfall_dt.days * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surgeplot.surge_afteraxes(cd, 
                                        track, landfall, plot_direction=False)

    # Limits for plots
    full_xlimits = [clawdata.lower[0], clawdata.upper[0]]
    full_ylimits = [clawdata.lower[1], clawdata.upper[1]]

    # Color limits
    surface_range = 1.0
    speed_range = 2.0

    xlimits = full_xlimits
    ylimits = full_ylimits
    eta = physics.sea_level
    if not isinstance(eta,list):
        eta = [eta]
    surface_limits = [eta[0]-surface_range,eta[0]+surface_range]
    speed_limits = [0.0,speed_range]
    
    wind_limits = [0,55]
    pressure_limits = [966,1013]

    ref_lines = []


    # ==========================================================================
    #  Generic helper functions
    # ==========================================================================
    def pcolor_afteraxes(current_data):
        surge_afteraxes(current_data)
        # surgeplot.gauge_locations(current_data)
        
    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)
        
    def bathy_ref_lines(current_data):
        pass
    #     plt.hold(True)
    #     y = [amrdata.ylower,amrdata.yupper]
    #     for ref_line in ref_lines:
    #         plt.plot([ref_line,ref_line],y,'y--')
    #     plt.hold(False)

    
    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Surface Elevations - Entire Domain
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface', figno=0)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    surgeplot.add_surface_elevation(plotaxes, bounds=surface_limits)
    surgeplot.add_land(plotaxes,topo_min=-10.0,topo_max=5.0)


    # ========================================================================
    #  Water Speed - Entire Domain
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='speed', figno=1)
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = xlimits
    plotaxes.ylimits = ylimits
    plotaxes.afteraxes = pcolor_afteraxes

    # Speed
    surgeplot.add_speed(plotaxes,bounds=speed_limits)

    # Land
    surgeplot.add_land(plotaxes)


    # ========================================================================
    # Hurricane forcing - Entire Domain
    # ========================================================================
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure', figno=2)
    plotfigure.show = surge_data.pressure_forcing
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    surgeplot.add_pressure(plotaxes,bounds=pressure_limits)
    # add_pressure(plotaxes)
    surgeplot.add_land(plotaxes)
    
    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed',figno=4)
    plotfigure.show = surge_data.wind_forcing
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    surgeplot.add_wind(plotaxes,bounds=wind_limits,plot_type='imshow')
    # add_wind(plotaxes,bounds=wind_limits,plot_type='contour')
    # add_wind(plotaxes,bounds=wind_limits,plot_type='quiver')
    surgeplot.add_land(plotaxes)
    
    # Wind field components
    plotfigure = plotdata.new_plotfigure(name='Wind Components',figno=5)
    plotfigure.show = surge_data.wind_forcing and False
    plotfigure.kwargs = {'figsize':(16,6)}
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "X-Component of Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = surgeplot.wind_x
    plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.imshow_cmin = -wind_limits[1]
    plotitem.imshow_cmax = wind_limits[1]
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Y-Component of Wind Field"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = surgeplot.wind_y
    plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.imshow_cmin = -wind_limits[1]
    plotitem.imshow_cmax = wind_limits[1]
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    # plotaxes.xlimits = [0.0,amrdata.tfinal]
    # plotaxes.ylimits = [0,150.0]
    plotaxes.ylimits = surface_limits
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = surgeplot.gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'r-'
    
    # =================
    #  Plot bathymetry
    # =================
    plotfigure = plotdata.new_plotfigure(name='Bathymetry', figno=301)
    plotfigure.show = True

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    plotaxes.title = "Bathymetry"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True

    plotitem = plotaxes.new_plotitem(plot_type="2d_pcolor")
    plotitem.plot_var = geoplot.topo
    # plotitem.pcolor_cmap = geoplot.seafloor_colormap
    plotitem.pcolor_cmin = -3000.0
    plotitem.pcolor_cmax = 300.0
    plotitem.add_colorbar = True

    surgeplot.add_land(plotaxes)


    #-----------------------------------------
    # Figures for gauges
    #-----------------------------------------
    # plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
    #                 type='each_gauge')
    # plotfigure.clf_each_gauge = True
    # 
    # # Set up for axes in this figure:
    # plotaxes = plotfigure.new_plotaxes()
    # plotaxes.xlimits = 'auto'
    # plotaxes.ylimits = 'auto'
    # plotaxes.title = 'Surface'
    # 
    # # Plot surface as blue curve:
    # plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.plot_var = 3
    # plotitem.plotstyle = 'b-'
    # 
    # # Plot topo as green curve:
    # plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    # plotitem.show = False
    # 
    # def gaugetopo(current_data):
    #     q = current_data.q
    #     h = q[0,:]
    #     eta = q[3,:]
    #     topo = eta - h
    #     return topo
    #     
    # plotitem.plot_var = gaugetopo
    # plotitem.plotstyle = 'g-'
    # 
    # def add_zeroline(current_data):
    #     from pylab import plot, legend, xticks, floor
    #     t = current_data.t
    #     #legend(('surface','topography'),loc='lower left')
    #     plot(t, 0*t, 'k')
    #     n = int(floor(t.max()/3600.) + 2)
    #     xticks([3600*i for i in range(n)])
    # 
    # plotaxes.afteraxes = add_zeroline


    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'          # list of frames to print
    # plotdata.print_framenos = [45,46,47,48]
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata
예제 #9
0
def setplot(plotdata):
    r"""Setplot function for surge plotting"""

    plotdata.clearfigures()  # clear any old figures,axes,items data
    plotdata.format = 'binary'

    fig_num_counter = surge.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read(os.path.join(plotdata.outdir, 'claw.data'))
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir, 'amr.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir, 'geoclaw.data'))
    surge_data = geodata.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir, 'surge.data'))
    friction_data = geodata.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir, 'friction.data'))

    # Load storm track
    track = surge.track_data(os.path.join(plotdata.outdir, 'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    if storm_num == 1:
        # Storm 1
        landfall_dt = datetime.datetime(1997, 11, 15, 3) - datetime.datetime(
            1997, 1, 1, 0)
    elif storm_num == 2:
        # Storm 2
        landfall_dt = datetime.datetime(2008, 12, 17, 0) - datetime.datetime(
            2008, 1, 1, 0)

    landfall = (landfall_dt.days) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.surge_afteraxes(
        cd, track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta, list):
        eta = [eta]
    surface_limits = [-5.0, 5.0]
    # surface_contours = numpy.linspace(-surface_range, surface_range,11)
    surface_contours = [
        -5, -4.5, -4, -3.5, -3, -2.5, -2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2, 2.5,
        3, 3.5, 4, 4.5, 5
    ]
    surface_ticks = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
    surface_labels = [str(value) for value in surface_ticks]
    speed_limits = [0.0, speed_range]
    speed_contours = numpy.linspace(0.0, speed_range, 13)
    speed_ticks = [0, 1, 2, 3]
    speed_labels = [str(value) for value in speed_ticks]

    # wind_limits = [0,64]
    wind_limits = [0, 50]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935, 1013]
    friction_bounds = [0.01, 0.04]

    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.gauge_locations(current_data,gaugenos=[6])

    def afteraxes(current_data):
        surge_afteraxes(current_data)

    def add_custom_colorbar_ticks_to_axes(axes,
                                          item_name,
                                          ticks,
                                          tick_labels=None):
        axes.plotitem_dict[item_name].colorbar_ticks = ticks
        axes.plotitem_dict[item_name].colorbar_tick_labels = tick_labels

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================
    regions = {
        "Full Domain (Grids)": [[clawdata.lower[0], clawdata.upper[0]],
                                [clawdata.lower[1], clawdata.upper[1]],
                                [1, 1, 1, 1, 1, 1, 1]],
        "Mumbai Regio (Grids)": [[70, 75], [17, 22], [1, 1, 1, 1, 1, 1, 1]],
        "Mumbai (Grids)": [[72.6, 73.15], [18.80, 19.25],
                           [1, 1, 1, 1, 1, 1, 1]],
        "Full Domain (No Grids)": [[clawdata.lower[0], clawdata.upper[0]],
                                   [clawdata.lower[1], clawdata.upper[1]],
                                   [0, 0, 0, 0, 0, 0, 0]],
        "Mumbai Region (No Grids)": [[70, 75], [17, 22], [0, 0, 0, 0, 0, 0,
                                                          0]],
        "Mumbai (No Grids)": [[72.6, 73.15], [18.80, 19.25],
                              [0, 0, 0, 0, 0, 0, 0]]
    }
    full_xlimits = regions['Full Domain (Grids)'][0]
    full_ylimits = regions['Full Domain (Grids)'][1]

    for (name, region_data) in regions.iteritems():

        #
        #  Surface
        #
        plotfigure = plotdata.new_plotfigure(
            name='Surface - %s' % name, figno=fig_num_counter.get_counter())
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Surface'
        plotaxes.scaled = True
        plotaxes.xlimits = region_data[0]
        plotaxes.ylimits = region_data[1]
        plotaxes.afteraxes = afteraxes

        surge.add_surface_elevation(plotaxes,
                                    plot_type='pcolor',
                                    bounds=surface_limits)
        # surge.add_surface_elevation(plotaxes, plot_type='contourf',
        #                                        contours=surface_contours)
        surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)
        surge.add_bathy_contours(plotaxes)

        if article:
            plotaxes.plotitem_dict['surface'].add_colorbar = False
        else:
            add_custom_colorbar_ticks_to_axes(plotaxes, 'surface',
                                              surface_ticks, surface_labels)
        plotaxes.plotitem_dict['land'].amr_patchedges_show = region_data[2]
        plotaxes.plotitem_dict['surface'].amr_patchedges_show = region_data[2]

        #
        #  Water Speed
        #
        plotfigure = plotdata.new_plotfigure(
            name='Currents - %s' % name, figno=fig_num_counter.get_counter())
        plotfigure.show = True

        # Set up for axes in this figure:
        plotaxes = plotfigure.new_plotaxes()
        plotaxes.title = 'Currents'
        plotaxes.scaled = True
        plotaxes.xlimits = region_data[0]
        plotaxes.ylimits = region_data[1]
        plotaxes.afteraxes = afteraxes

        # Speed
        surge.add_speed(plotaxes, plot_type='pcolor', bounds=speed_limits)
        # surge.add_speed(plotaxes, plot_type='contourf', contours=speed_contours)
        if article:
            plotaxes.plotitem_dict['speed'].add_colorbar = False
        else:
            add_custom_colorbar_ticks_to_axes(plotaxes, 'speed', speed_ticks,
                                              speed_labels)

        # Land
        surge.add_land(plotaxes, topo_min=-10.0, topo_max=5.0)

        plotaxes.plotitem_dict['speed'].amr_patchedges_show = region_data[2]
        plotaxes.plotitem_dict['land'].amr_patchedges_show = region_data[2]

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and False

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = full_xlimits
    plotaxes.ylimits = full_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.add_friction(plotaxes, bounds=friction_bounds)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['friction'].colorbar_label = "$n$"

    # ==========================
    #  Hurricane Forcing fields
    # ==========================
    grids = [[0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1]]
    label = ["(No Grids)", "(Grids)"]
    for i in xrange(2):
        # Pressure field
        plotfigure = plotdata.new_plotfigure(
            name='Pressure %s' % label[i], figno=fig_num_counter.get_counter())
        plotfigure.show = surge_data.pressure_forcing and True

        plotaxes = plotfigure.new_plotaxes()
        plotaxes.xlimits = full_xlimits
        plotaxes.ylimits = full_ylimits
        plotaxes.title = "Pressure Field"
        plotaxes.afteraxes = afteraxes
        plotaxes.scaled = True

        surge.add_pressure(plotaxes, bounds=pressure_limits)
        surge.add_land(plotaxes)
        plotaxes.plotitem_dict['pressure'].amr_patchedges_show = grids[i]
        plotaxes.plotitem_dict['land'].amr_patchedges_show = grids[i]

        # Wind field
        plotfigure = plotdata.new_plotfigure(
            name='Wind Speed %s' % label[i],
            figno=fig_num_counter.get_counter())
        plotfigure.show = surge_data.wind_forcing and True

        plotaxes = plotfigure.new_plotaxes()
        plotaxes.xlimits = full_xlimits
        plotaxes.ylimits = full_ylimits
        plotaxes.title = "Wind Field"
        plotaxes.afteraxes = afteraxes
        plotaxes.scaled = True

        surge.add_wind(plotaxes, bounds=wind_limits, plot_type='pcolor')
        surge.add_land(plotaxes)
        plotaxes.plotitem_dict['wind'].amr_patchedges_show = grids[i]
        plotaxes.plotitem_dict['land'].amr_patchedges_show = grids[i]

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = regions["Mumbai (Grids)"][0]
    gauge_ylimits = regions["Mumbai (Grids)"][1]

    # gauge_location_shrink = 0.75
    def gauge_after_axes(cd):
        # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        # import pdb; pdb.set_trace()
        surge.gauge_locations(cd, gaugenos=[1, 2, 3])
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes
    surge.add_surface_elevation(plotaxes,
                                plot_type='pcolor',
                                bounds=surface_limits)
    # surge.plot.add_surface_elevation(plotaxes, plot_type="contourf")
    add_custom_colorbar_ticks_to_axes(plotaxes, 'surface', surface_ticks,
                                      surface_labels)
    surge.add_land(plotaxes)
    # plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    # plotaxes.plotitem_dict['surface'].add_colorbar = False
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    # plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    # plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [
        0, 0, 0, 0, 0, 0, 0
    ]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0, 0, 0, 0, 0, 0, 0]

    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # plotfigure.kwargs['figsize'] = (16,10)

    def gauge_after_axes(cd):
        if cd.gaugeno in [1, 2, 3]:
            axes = plt.gca()

            # Add GeoClaw gauge data
            geoclaw_gauge = cd.gaugesoln
            axes.plot(
                seconds2days(geoclaw_gauge.t -
                             date2seconds(gauge_landfall[1])),
                geoclaw_gauge.q[3, :], 'b--')

            # Fix up plot
            axes.set_title('Station %s' % cd.gaugeno)
            axes.set_xlabel('Days relative to landfall')
            axes.set_ylabel('Surface (m)')
            axes.set_xlim([-2, 1])
            axes.set_ylim([-1, 5])
            axes.set_xticks([-2, -1, 0, 1])
            axes.set_xticklabels([r"$-2$", r"$-1$", r"$0$", r"$1$"])
            axes.grid(True)
            axes.legend()

            plt.hold(False)

        # surge.gauge_afteraxes(cd)

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = [-2, 1]
    # plotaxes.xlabel = "Days from landfall"
    # plotaxes.ylabel = "Surface (m)"
    plotaxes.ylimits = [-1, 5]
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = gauge_after_axes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    #-----------------------------------------

    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    if article:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = [54, 60, 66, 72, 78,
                                   84]  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3]  # list of gauges to print
        plotdata.print_fignos = [4, 5, 6, 7, 10, 3,
                                 300]  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = False  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    else:
        plotdata.printfigs = True  # print figures
        plotdata.print_format = 'png'  # file format
        plotdata.print_framenos = 'all'  # list of frames to print
        plotdata.print_gaugenos = [1, 2, 3]  # list of gauges to print
        plotdata.print_fignos = 'all'  # list of figures to print
        plotdata.html = True  # create html files of plots?
        plotdata.html_homelink = '../README.html'  # pointer for top of index
        plotdata.latex = True  # create latex file of plots?
        plotdata.latex_figsperline = 2  # layout of plots
        plotdata.latex_framesperline = 1  # layout of plots
        plotdata.latex_makepdf = False  # also run pdflatex?

    return plotdata
예제 #10
0
파일: setplot.py 프로젝트: smoe1/apps
def setplot(plotdata):
    r"""Setplot function for surge plotting"""
    

    plotdata.clearfigures()  # clear any old figures,axes,items data

    fig_num_counter = surge.plot.figure_counter()

    # Load data from output
    clawdata = clawutil.ClawInputData(2)
    clawdata.read('claw.data')
    amrdata = amrclaw.AmrclawInputData(clawdata)
    amrdata.read(os.path.join(plotdata.outdir,'amrclaw.data'))
    physics = geodata.GeoClawData()
    physics.read(os.path.join(plotdata.outdir,'geoclaw.data'))
    surge_data = surge.data.SurgeData()
    surge_data.read(os.path.join(plotdata.outdir,'surge.data'))
    friction_data = surge.data.FrictionData()
    friction_data.read(os.path.join(plotdata.outdir,'friction.data'))

    # Load storm track
    track = surge.plot.track_data(os.path.join(plotdata.outdir,'fort.track'))

    # Calculate landfall time, off by a day, maybe leap year issue?
    landfall_dt = datetime.datetime(2008,9,13,7) - datetime.datetime(2008,1,1,0)
    landfall = (landfall_dt.days - 1.0) * 24.0 * 60**2 + landfall_dt.seconds

    # Set afteraxes function
    surge_afteraxes = lambda cd: surge.plot.surge_afteraxes(cd, 
                                        track, landfall, plot_direction=False)

    # Color limits
    surface_range = 5.0
    speed_range = 3.0
    eta = physics.sea_level
    if not isinstance(eta,list):
        eta = [eta]
    surface_limits = [eta[0]-surface_range,eta[0]+surface_range]
    speed_limits = [0.0,speed_range]
    
    wind_limits = [0,64]
    # wind_limits = [-0.002,0.002]
    pressure_limits = [935,1013]
    friction_bounds = [0.01,0.04]
    # vorticity_limits = [-1.e-2,1.e-2]

    # def pcolor_afteraxes(current_data):
    #     surge_afteraxes(current_data)
    #     surge.plot.gauge_locations(current_data,gaugenos=[6])
    
    def contour_afteraxes(current_data):
        surge_afteraxes(current_data)

    # ==========================================================================
    # ==========================================================================
    #   Plot specifications
    # ==========================================================================
    # ==========================================================================

    # ========================================================================
    #  Entire Gulf
    # ========================================================================
    gulf_xlimits = [clawdata.lower[0],clawdata.upper[0]]
    gulf_ylimits = [clawdata.lower[1],clawdata.upper[1]]
    gulf_shrink = 1.0
    def gulf_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        surge_afteraxes(cd)
    #
    #  Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Entire Domain', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    surge.plot.add_surface_elevation(plotaxes,bounds=surface_limits,shrink=gulf_shrink)
    surge.plot.add_land(plotaxes,topo_min=-10.0,topo_max=5.0)
    surge.plot.add_bathy_contours(plotaxes)

    #
    #  Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Entire Domain',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    # Speed
    surge.plot.add_speed(plotaxes,bounds=speed_limits,shrink=gulf_shrink)

    # Land
    surge.plot.add_land(plotaxes)
    surge.plot.add_bathy_contours(plotaxes)    

    #
    # Water Velocity Components
    #
    plotfigure = plotdata.new_plotfigure(name='Velocity Components - Entire Domain',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # X-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(121)"
    plotaxes.title = 'Velocity, X-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.plot.water_u
    plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]

    surge.plot.add_land(plotaxes)

    # Y-Component
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.axescmd = "subplot(122)"
    plotaxes.title = 'Velocity, Y-Component'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.plot.water_v
    plotitem.pcolor_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.pcolor_cmin = -speed_limits[1]
    plotitem.pcolor_cmax = speed_limits[1]
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1]
    
    surge.plot.add_land(plotaxes)

    # 
    # Depth
    # 
    plotfigure = plotdata.new_plotfigure(name='Depth - Entire Domain', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'depth'
    plotaxes.scaled = True
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.afteraxes = gulf_after_axes

    plotitem = plotaxes.new_plotitem(plot_type='2d_imshow')
    plotitem.plot_var = 0
    plotitem.imshow_cmap = colormaps.make_colormap({1.0:'r',0.5:'w',0.0:'b'})
    plotitem.imshow_cmin = 0
    plotitem.imshow_cmax = 100
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.add_colorbar = True
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1,1,1,1,1,1,1]

    #
    # Hurricane forcing
    #
    # Pressure field
    plotfigure = plotdata.new_plotfigure(name='Pressure',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.pressure_forcing and True
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Pressure Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True
    
    surge.plot.add_pressure(plotaxes, bounds=pressure_limits, shrink=gulf_shrink)
    # add_pressure(plotaxes)
    surge.plot.add_land(plotaxes)
    
    # Wind field
    plotfigure = plotdata.new_plotfigure(name='Wind Speed', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = surge_data.wind_forcing and True
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Wind Field"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True
    
    surge.plot.add_wind(plotaxes, bounds=wind_limits, plot_type='imshow',
                                  shrink=gulf_shrink)
    # add_wind(plotaxes,bounds=wind_limits,plot_type='contour')
    # add_wind(plotaxes,bounds=wind_limits,plot_type='quiver')
    surge.plot.add_land(plotaxes)
    
    # Surge field
    plotfigure = plotdata.new_plotfigure(name='Surge Field', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = ((surge_data.wind_forcing or surge_data.pressure_forcing) 
                        and False)
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Storm Surge Source Term S"
    plotaxes.afteraxes = gulf_after_axes
    plotaxes.scaled = True
    
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.plot.pressure_field + 1
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1,1,1,0,0]
    
    surge.plot.add_land(plotaxes)

    plotfigure = plotdata.new_plotfigure(name='Friction/Coriolis Source', 
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = False
    
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    plotaxes.title = "Friction/Coriolis Source"
    plotaxes.afteraxes = surge_afteraxes
    plotaxes.scaled = True
    
    plotitem = plotaxes.new_plotitem(plot_type='2d_pcolor')
    plotitem.plot_var = surge.plot.pressure_field + 2
    plotitem.pcolor_cmap = plt.get_cmap('PuBu')
    plotitem.pcolor_cmin = 0.0
    plotitem.pcolor_cmax = 1e-3
    plotitem.add_colorbar = True
    plotitem.colorbar_shrink = gulf_shrink
    plotitem.colorbar_label = "Source Strength"
    plotitem.amr_celledges_show = [0,0,0]
    plotitem.amr_patchedges_show = [1,1,1,1,1,0,0]
    
    surge.plot.add_land(plotaxes)

    #
    # Friction field
    #
    plotfigure = plotdata.new_plotfigure(name='Friction',
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = friction_data.variable_friction and True

    def friction_after_axes(cd):
        plt.subplots_adjust(left=0.08, bottom=0.04, right=0.97, top=0.96)
        plt.title(r"Manning's $n$ Coefficient")
        # surge_afteraxes(cd)

    plotaxes = plotfigure.new_plotaxes()
    plotaxes.xlimits = gulf_xlimits
    plotaxes.ylimits = gulf_ylimits
    # plotaxes.title = "Manning's N Coefficient"
    plotaxes.afteraxes = friction_after_axes
    plotaxes.scaled = True

    surge.plot.add_friction(plotaxes,bounds=friction_bounds,shrink=0.9)
    plotaxes.plotitem_dict['friction'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['friction'].colorbar_label = ""


    # ========================================================================
    #  LaTex Shelf
    # ========================================================================
    latex_xlimits = [-97.5,-88.5]
    latex_ylimits = [27.5,30.5]
    latex_shrink = 1.0
    def latex_after_axes(cd):
        plt.subplots_adjust(right=1.0)
        surge_afteraxes(cd)
    #
    # Surface
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - LaTex Shelf',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    plotfigure.kwargs = {'figsize':(9,2.7)}#, 'facecolor':}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes
    
    surge.plot.add_surface_elevation(plotaxes,bounds=surface_limits,shrink=latex_shrink)
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surge.plot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - LaTex Shelf',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True
    plotfigure.kwargs = {'figsize':(9,2.7), 'facecolor':'none'}

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = latex_xlimits
    plotaxes.ylimits = latex_ylimits
    plotaxes.afteraxes = latex_after_axes
    
    surge.plot.add_speed(plotaxes,bounds=speed_limits,shrink=latex_shrink)
    # surge.plot.add_surface_elevation(plotaxes,plot_type='contour')
    surge.plot.add_land(plotaxes)
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,0,0,0,0]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,0,0,0,0]


    # ========================================================================
    #  Houston/Galveston
    # ========================================================================
    houston_xlimits = [-(95.0 + 26.0 / 60.0), -(94.0 + 25.0 / 60.0)]
    houston_ylimits = [29.1, 29.0 + 55.0 / 60.0]
    houston_shrink = 0.9
    def houston_after_axes(cd):
        plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        # surge.plot.gauge_locations(cd)
    
    #
    # Surface Elevations
    #
    plotfigure = plotdata.new_plotfigure(name='Surface - Houston/Galveston',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes
    
    surge.plot.add_surface_elevation(plotaxes,bounds=surface_limits,shrink=houston_shrink)
    surge.plot.add_land(plotaxes)
    # surge.plot.add_bathy_contours(plotaxes)

    # Plot using jet and 0.0 to 5.0 to match figgen generated ADCIRC results
    plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')

    #
    # Water Speed
    #
    plotfigure = plotdata.new_plotfigure(name='Currents - Houston/Galveston',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Currents'
    plotaxes.scaled = True
    plotaxes.xlimits = houston_xlimits
    plotaxes.ylimits = houston_ylimits
    plotaxes.afteraxes = houston_after_axes
    
    surge.plot.add_speed(plotaxes,bounds=speed_limits,shrink=houston_shrink)
    surge.plot.add_land(plotaxes)
    # surge.plot.add_bathy_contours(plotaxes)
    plotaxes.plotitem_dict['speed'].amr_patchedges_show = [1,1,1,1,1,1,1,1]
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [1,1,1,1,1,1,1,1]


    # ========================================================================
    #  Figures for gauges
    # ========================================================================
    plotfigure = plotdata.new_plotfigure(name='Surface & topo', figno=300, \
                    type='each_gauge')
    plotfigure.show = True
    plotfigure.clf_each_gauge = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    # try:
        # plotaxes.xlimits = [clawdata.t0,clawdata.tfinal]
    # except:
        # pass
    # plotaxes.ylimits = [0,150.0]
    plotaxes.ylimits = 'auto'
    plotaxes.title = 'Surface'
    plotaxes.afteraxes = surge.plot.gauge_afteraxes

    # Plot surface as blue curve:
    plotitem = plotaxes.new_plotitem(plot_type='1d_plot')
    plotitem.plot_var = 3
    plotitem.plotstyle = 'b-'

    # =====================
    #  Gauge Location Plot
    # =====================
    gauge_xlimits = [-95.5, -94.0]
    gauge_ylimits = [29.0, 30.0]
    houston_shrink = 0.9
    def gauge_after_axes(cd):
        # plt.subplots_adjust(left=0.12, bottom=0.06, right=0.97, top=0.97)
        surge_afteraxes(cd)
        surge.plot.gauge_locations(cd)
        plt.title("Gauge Locations")

    plotfigure = plotdata.new_plotfigure(name='Gauge Locations',  
                                         figno=fig_num_counter.get_counter())
    plotfigure.show = True

    # Set up for axes in this figure:
    plotaxes = plotfigure.new_plotaxes()
    plotaxes.title = 'Surface'
    plotaxes.scaled = True
    plotaxes.xlimits = gauge_xlimits
    plotaxes.ylimits = gauge_ylimits
    plotaxes.afteraxes = gauge_after_axes
    
    surge.plot.add_surface_elevation(plotaxes)
    surge.plot.add_land(plotaxes)
    plotaxes.plotitem_dict['surface'].amr_patchedges_show = [0,0,0,0,0,0,0]
    plotaxes.plotitem_dict['surface'].add_colorbar = False
    plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('jet')
    # plotaxes.plotitem_dict['surface'].pcolor_cmap = plt.get_cmap('gist_yarg')
    plotaxes.plotitem_dict['surface'].pcolor_cmin = 0.0
    plotaxes.plotitem_dict['surface'].pcolor_cmax = 5.0
    plotaxes.plotitem_dict['land'].amr_patchedges_show = [0,0,0,0,0,0,0]

    #-----------------------------------------
    
    # Parameters used only when creating html and/or latex hardcopy
    # e.g., via pyclaw.plotters.frametools.printframes:

    plotdata.printfigs = True                # print figures
    plotdata.print_format = 'png'            # file format
    plotdata.print_framenos = 'all'            # list of frames to print
    plotdata.print_gaugenos = 'all'          # list of gauges to print
    plotdata.print_fignos = 'all'            # list of figures to print
    plotdata.html = True                     # create html files of plots?
    plotdata.html_homelink = '../README.html'   # pointer for top of index
    plotdata.latex = True                    # create latex file of plots?
    plotdata.latex_figsperline = 2           # layout of plots
    plotdata.latex_framesperline = 1         # layout of plots
    plotdata.latex_makepdf = False           # also run pdflatex?

    return plotdata