예제 #1
0
def first_pass_data_and_labels(notes):
    '''
    first_pass_data_and_labels()

    Purpose: Interface with notes object to get text data and labels

    @param notes. List of Note objects
    @return <tuple> whose elements are:
              0) list of tokenized sentences
              1) list of labels for tokenized sentences

    >>> import os
    >>> from notes.note import Note
    >>> base_dir = os.path.join(os.getenv('CLINER_DIR'), 'tests', 'data')
    >>> txt = os.path.join(base_dir, 'single.txt')
    >>> con = os.path.join(base_dir, 'single.con')
    >>> note_tmp = Note('i2b2')
    >>> note_tmp.read(txt, con)
    >>> notes = [note_tmp]
    >>> first_pass_data_and_labels(notes)
    ([['The', 'score', 'stood', 'four', 'to', 'two', ',', 'with', 'but', 'one', 'inning', 'more', 'to', 'play', ',']], [['B', 'I', 'I', 'I', 'I', 'I', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O', 'O']])
    '''

    # Get the data and annotations from the Note objects
    l_tokenized_sentences = [note.getTokenizedSentences() for note in notes]
    l_iob_labels = [note.getIOBLabels() for note in notes]

    tokenized_sentences = flatten(l_tokenized_sentences)
    iob_labels = flatten(l_iob_labels)

    return tokenized_sentences, iob_labels
예제 #2
0
    def __first_train(self, tokenized_sentences, Y, do_grid=False):
        """
        Model::__first_train()

        Purpose: Train the first pass classifiers (for IOB chunking)

        @param tokenized_sentences. <list> of tokenized sentences
        @param Y.                   <list-of-lists> of IOB labels for words
        @param do_grid.             <boolean> whether to perform a grid search

        @return          None
        """

        if globals_cliner.verbosity > 0:
            print('first pass')
        if globals_cliner.verbosity > 0:
            print('\textracting  features (pass one)')

        # Seperate into prose v nonprose
        nested_prose_data, nested_prose_Y = list(
            zip(*[
                line_iob_tup for line_iob_tup in zip(tokenized_sentences, Y)
                if is_prose_sentence(line_iob_tup[0])
            ]))
        nested_nonprose_data, nested_nonprose_Y = list(
            zip(*[
                line_iob_tup for line_iob_tup in zip(tokenized_sentences, Y)
                if not is_prose_sentence(line_iob_tup[0])
            ]))

        # extract features
        nested_prose_feats = feat_obj.IOB_prose_features(nested_prose_data)
        nested_nonprose_feats = feat_obj.IOB_nonprose_features(
            nested_nonprose_data)

        # Flatten lists (because classifier will expect flat)
        prose_Y = flatten(nested_prose_Y)
        nonprose_Y = flatten(nested_nonprose_Y)

        # rename because code uses it
        pchunks = prose_Y
        nchunks = nonprose_Y
        prose = nested_prose_feats
        nonprose = nested_nonprose_feats

        # Train classifiers for prose and nonprose
        pvec, pclf = self.__generic_first_train('prose', prose, pchunks,
                                                do_grid)
        nvec, nclf = self.__generic_first_train('nonprose', nonprose, nchunks,
                                                do_grid)

        # Save vectorizers
        self._first_prose_vec = pvec
        self._first_nonprose_vec = nvec

        # Save classifiers
        self._first_prose_clf = pclf
        self._first_nonprose_clf = nclf
예제 #3
0
    def __generic_first_predict(self,
                                p_or_n,
                                text_features,
                                dvect,
                                clf,
                                do_grid=False):
        '''
        Model::__generic_first_predict()

        Purpose: Train that works for both prose and nonprose

        @param p_or_n.        <string> either "prose" or "nonprose"
        @param text_features. <list-of-lists> of feature dictionaries
        @param dvect.         <DictVectorizer>
        @param clf.           scikit-learn classifier
        @param do_grid.       <boolean> indicating whether to perform grid search
        '''

        # If nothing to predict, skip actual prediction
        if len(text_features) == 0:
            print('\tnothing to predict (pass one) ' + p_or_n)
            return []

        # Save list structure to reconstruct after vectorization
        offsets = save_list_structure(text_features)

        if globals_cliner.verbosity > 0:
            print('\tvectorizing features (pass one) ' + p_or_n)

        # Vectorize features
        X_feats = dvect.transform(flatten(text_features))

        if globals_cliner.verbosity > 0:
            print('\tpredicting    labels (pass one) ' + p_or_n)

        # CRF requires reconstruct lists
        if self._crf_enabled:
            X_feats = reconstruct_list(list(X_feats), offsets)
            lib = crf
        else:
            lib = sci

        # for X in X_feats:
        #    for x in X:
        #        print x
        #    print
        # print '\n'

        # Predict IOB labels
        out = lib.predict(clf, X_feats)

        # Format labels from output
        predictions = reconstruct_list(out, offsets)
        return predictions
예제 #4
0
    def __second_train(self,
                       chunked_data,
                       inds_list,
                       con_labels,
                       do_grid=False):
        """
        Model::__second_train()

        Purpose: Train the first pass classifiers (for IOB chunking)

        @param data      <list> of tokenized sentences after collapsing chunks
        @param inds_list <list-of-lists> of indices
                           - assertion: len(data) == len(inds_list)
                           - one line of 'inds_list' contains a list of indices
                               into the corresponding line for 'data'
        @param con_labels <list> of concept label strings
                           - assertion: there are sum(len(inds_list)) labels
                              AKA each index from inds_list maps to a label
        @param do_grid   <boolean> indicating whether to perform a grid search

        @return          None
        """

        if globals_cliner.verbosity > 0:
            print('second pass')

        # Extract features
        if globals_cliner.verbosity > 0:
            print('\textracting  features (pass two)')

        text_features = [
            feat_obj.concept_features(s, inds)
            for s, inds in zip(chunked_data, inds_list)
        ]

        flattened_text_features = flatten(text_features)

        if globals_cliner.verbosity > 0:
            print('\tvectorizing features (pass two)')

        # Vectorize labels
        numeric_labels = [concept_labels[y] for y in con_labels]

        # Vectorize features
        self._second_vec = DictVectorizer()
        vectorized_features = self._second_vec.fit_transform(
            flattened_text_features)

        if globals_cliner.verbosity > 0:
            print('\ttraining  classifier (pass two)')

        # Train the model
        self._second_clf = sci.train(vectorized_features, numeric_labels,
                                     do_grid)
예제 #5
0
def second_pass_data_and_labels(notes):
    '''
    second_pass_data_and_labels()

    Purpose: Interface with notes object to get text data and labels

    @param notes. List of Note objects
    @return <tuple> whose elements are:
              0) list of chunked sentences
              0) list of list-of-indices designating chunks
              1) list of labels for chunks

    >>> import os
    >>> from notes.note import Note
    >>> base_dir = os.path.join(os.getenv('CLINER_DIR'), 'tests', 'data')
    >>> txt = os.path.join(base_dir, 'single.txt')
    >>> con = os.path.join(base_dir, 'single.con')
    >>> note_tmp = Note('i2b2')
    >>> note_tmp.read(txt, con)
    >>> notes = [note_tmp]
    >>> second_pass_data_and_labels(notes)
    ([['The score stood four to two', ',', 'with', 'but', 'one', 'inning', 'more', 'to', 'play', ',']], [[0]], ['problem'])
    '''

    # Get the data and annotations from the Note objects
    l_chunked_sentences = [note.getChunkedText() for note in notes]
    l_inds_list = [note.getConceptIndices() for note in notes]
    l_con_labels = [note.getConceptLabels() for note in notes]

    chunked_sentences = flatten(l_chunked_sentences)
    inds_list = flatten(l_inds_list)
    con_labels = flatten(l_con_labels)

    # print 'labels: ', len(con_labels)
    # print 'inds:   ', sum(map(len,inds_list))
    # exit()

    return chunked_sentences, inds_list, con_labels
예제 #6
0
    def train(self, train_notes, val=[], test=[]):
        """
        ClinerModel::train()

        Purpose: Train a Machine Learning model on annotated data

        @param notes. A list of Note objects (containing text and annotations)
        @return       None
        """

        # Extract formatted data
        train_sents = flatten([n.getTokenizedSentences() for n in train_notes])
        train_labels = flatten([n.getTokenLabels() for n in train_notes])

        if test:
            test_sents = flatten([n.getTokenizedSentences() for n in test])
            test_labels = flatten([n.getTokenLabels() for n in test])
        else:
            test_sents = []
            test_labels = []

        if val:
            print("VAL")
            val_sents = flatten([n.getTokenizedSentences() for n in val])
            val_labels = flatten([n.getTokenLabels() for n in val])
            self.train_fit(train_sents,
                           train_labels,
                           val_sents=val_sents,
                           val_labels=val_labels,
                           test_sents=test_sents,
                           test_labels=test_labels)

        else:
            print("NO DEV")
            self.train_fit(train_sents,
                           train_labels,
                           dev_split=0.1,
                           test_sents=test_sents,
                           test_labels=test_labels)

        self._train_files = [n.getName() for n in train_notes + val]
예제 #7
0
def generic_predict(p_or_n, tokenized_sents, vocab, clf, use_lstm,
                    hyperparams):
    '''
    generic_predict()

    Train a model that works for both prose and nonprose

    @param p_or_n.          A string that indicates "prose", "nonprose", or "all"
    @param tokenized_sents. A list of sentences, where each sentence is tokenized
                              into words
    @param vocab.           A dictionary mapping word tokens to numeric indices.
    @param clf.             An encoding of the trained keras model.
    @param use_lstm.        Bool indicating whether clf is a CRF or LSTM.
    '''
    # use_lstm=self._use_lstm
    if use_lstm:

        #parameters=hd.load_parameters_from_file("LSTM_parameters.txt")
        parameters['use_pretrained_model'] = True

        #model_folder="./models/NN_models"
        predictions = []
        sys.stdout.write('\n use_lstm \n')
        dataset = Exp.Dataset()

        fictional_labels = copy.deepcopy(tokenized_sents)
        for idx, x in enumerate(fictional_labels):
            for val_id, value in enumerate(x):
                fictional_labels[idx][val_id] = 'O'

        Datasets_tokens = {}
        Datasets_labels = {}

        Datasets_tokens['deploy'] = tokenized_sents
        Datasets_labels['deploy'] = fictional_labels

        token_to_vector = dataset.load_dataset(
            Datasets_tokens,
            Datasets_labels,
            "",
            parameters,
            token_to_vector=tokens_to_vec,
            pretrained_dataset=pretrained_dataset)

        print(dataset.token_indices.keys())

        parameters['Feature_vector_length'] = dataset.feature_vector_size
        parameters['use_features_before_final_lstm'] = False

        dataset.update_dataset("", ['deploy'], Datasets_tokens,
                               Datasets_labels)

        del Datasets_tokens
        del Datasets_labels

        #model=current_model
        model = entity_model.EntityLSTM(dataset, parameters)

        os.mkdir(parameters['conll_like_result_folder'])

        test_temp = os.path.join(parameters['conll_like_result_folder'],
                                 'test/')
        train_temp = os.path.join(parameters['conll_like_result_folder'],
                                  'train/')
        valid_temp = os.path.join(parameters['conll_like_result_folder'],
                                  'valid/')

        os.mkdir(test_temp)
        os.mkdir(train_temp)
        os.mkdir(valid_temp)

        sess = tf.Session()
        with sess.as_default():

            #model=entity_model.EntityLSTM(dataset,parameters)
            transition_params_trained = model.restore_from_pretrained_model(
                parameters,
                dataset,
                sess,
                token_to_vector=token_to_vector,
                pretrained_dataset=pretrained_dataset)
            del token_to_vector
            predictions = training_predict_LSTM.prediction_step(
                sess, dataset, "deploy", model, 0,
                parameters['conll_like_result_folder'],
                transition_params_trained)
            sess.close()

        tf.reset_default_graph()

        shutil.rmtree(parameters['conll_like_result_folder'])
        return predictions, model

    # If nothing to predict, skip actual prediction
    if len(tokenized_sents) == 0:
        sys.stdout.write('\tnothing to predict %s\n' % p_or_n)
        return []

    sys.stdout.write('\tvectorizing words %s\n' % p_or_n)

    if use_lstm:
        print('todo: incorporate lstm')
        # vectorize tokenized sentences
        #X = []
        #for sent in tokenized_sents:
        #   id_seq = []
        #   for w in sent:
        #      if w in vocab:
        #           id_seq.append(vocab[w])
        #       else:
        #        id_seq.append(vocab['oov'])
        #  X.append(id_seq)
    else:
        from cliner.feature_extraction.features import extract_features

        # vectorize validation X
        text_features = extract_features(tokenized_sents)
        flat_X_feats = vocab.transform(flatten(text_features))
        X = reconstruct_list(flat_X_feats, save_list_structure(text_features))

    sys.stdout.write('\tpredicting  labels %s\n' % p_or_n)

    # Predict labels
    if use_lstm:
        print("TEST_PREDICT")
        exit()

    else:
        from cliner.machine_learning import crf
        predictions = crf.predict(clf, X)

    # Format labels from output
    return predictions
예제 #8
0
def generic_train(p_or_n,
                  train_sents,
                  train_labels,
                  use_lstm,
                  val_sents=None,
                  val_labels=None,
                  test_sents=None,
                  test_labels=None,
                  dev_split=None):
    '''
    generic_train()

    Train a model that works for both prose and nonprose

    @param p_or_n.         A string that indicates "prose", "nonprose", or "all"
    @param train_sents.    A list of sentences; each sentence is tokenized into words
    @param train_labels.   Parallel to `train_sents`, 7-way labels for concept spans
    @param use_lstm        Bool indicating whether to train CRF or LSTM.
    @param val_sents.      Validation data. Same format as train_sents
    @param val_labels.     Validation data. Same format as train_labels
    @param dev_split.      A real number from 0 to 1
    '''

    # Must have data to train on:
    if len(train_sents) == 0:
        raise Exception('Training must have %s training examples' % p_or_n)

    # if you should split the data into train/dev yourself
    if (not val_sents) and (dev_split > 0.0) and (len(train_sents) > 10):

        p = int(dev_split * 100)
        sys.stdout.write('\tCreating %d/%d train/dev split\n' % (100 - p, p))

        perm = list(range(len(train_sents)))
        random.shuffle(perm)

        train_sents = [train_sents[i] for i in perm]
        train_labels = [train_labels[i] for i in perm]

        ind = int(dev_split * len(train_sents))

        val_sents = train_sents[:ind]
        train_sents = train_sents[ind:]

        val_labels = train_labels[:ind]
        train_labels = train_labels[ind:]
    else:
        sys.stdout.write('\tUsing existing validation data\n')

    sys.stdout.write('\tvectorizing words %s\n' % p_or_n)

    if use_lstm:
        print("TESTING NEW DATSET OBJECT")
        dataset = Exp.Dataset()

        parameters = hd.load_parameters_from_file("LSTM_parameters.txt")
        parameters['use_pretrained_model'] = False

        Datasets_tokens = {}
        Datasets_labels = {}

        Datasets_tokens['train'] = train_sents
        Datasets_labels['train'] = train_labels

        if val_sents != None:
            Datasets_tokens['valid'] = val_sents
            Datasets_labels['valid'] = val_labels

        if test_sents != None:
            Datasets_tokens['test'] = test_sents
            Datasets_labels['test'] = test_labels

        dataset.load_dataset(Datasets_tokens, Datasets_labels, "", parameters)
        pickle.dump(
            dataset,
            open(os.path.join(parameters['model_folder'], 'dataset.pickle'),
                 'wb'))

        print(Datasets_tokens['valid'][0])
        print(Datasets_tokens['test'][0])

        parameters['Feature_vector_length'] = dataset.feature_vector_size
        parameters['use_features_before_final_lstm'] = False
        parameters['learning_rate'] = 0.005

        sess = tf.Session()
        number_of_sent = list(range(len(dataset.token_indices['train'])))

        with sess.as_default():
            model = entity_model.EntityLSTM(dataset, parameters)
            sess.run(tf.global_variables_initializer())
            model.load_pretrained_token_embeddings(sess, dataset, parameters)
            epoch_number = -1
            transition_params_trained = np.random.rand(5 + 2, 5 + 2)
            values = {}
            values["best"] = 0

            f1_dictionary = {}
            f1_dictionary['best'] = 0

            model_saver = tf.train.Saver(max_to_keep=100)

        print("START TRAINING")

        eval_dir = os.path.join(
            tmo_dir, 'cliner_eval_%d' % random.randint(0, 256) + os.sep)
        parameters['conll_like_result_folder'] = eval_dir

        test_temp = os.path.join(parameters['conll_like_result_folder'],
                                 'test/')
        train_temp = os.path.join(parameters['conll_like_result_folder'],
                                  'train/')
        valid_temp = os.path.join(parameters['conll_like_result_folder'],
                                  'valid/')

        os.mkdir(parameters['conll_like_result_folder'])
        os.mkdir(test_temp)
        os.mkdir(train_temp)
        os.mkdir(valid_temp)

        while epoch_number < 90:
            average_loss_per_phrase = 0
            accuracy_per_phase = 0
            step = 0

            epoch_number += 1
            if epoch_number != 0:
                sequence_numbers = list(
                    range(len(dataset.token_indices['train'])))
                random.shuffle(sequence_numbers)
                for sequence_number in sequence_numbers:
                    loss, accuracy, transition_params_trained = training_predict_LSTM.train_step(
                        sess, dataset, sequence_number, model)
                    average_loss_per_phrase += loss
                    accuracy_per_phase += accuracy
                    step += 1
                    if step % 10 == 0:
                        print('Training {0:.2f}% done\n'.format(
                            step / len(sequence_numbers) * 100))

                model_saver.save(
                    sess,
                    os.path.join(parameters['model_folder'],
                                 'model_{0:05d}.ckpt'.format(epoch_number)))

                total_loss = average_loss_per_phrase
                total_accuracy = accuracy_per_phase

                average_loss_per_phrase = average_loss_per_phrase / len(
                    number_of_sent)
                accuracy_per_phase = accuracy_per_phase / len(number_of_sent)

            if epoch_number > 0:
                ""
                f1, predictions = training_predict_LSTM.prediction_step(
                    sess, dataset, "test", model, epoch_number,
                    parameters['conll_like_result_folder'],
                    transition_params_trained)
                f1_train, _ = training_predict_LSTM.prediction_step(
                    sess, dataset, "train", model, epoch_number,
                    parameters['conll_like_result_folder'],
                    transition_params_trained)
                f1_valid, _ = training_predict_LSTM.prediction_step(
                    sess, dataset, "valid", model, epoch_number,
                    parameters['conll_like_result_folder'],
                    transition_params_trained)

                correctly_predicted_tokens = training_predict_LSTM.compute_train_accuracy(
                    parameters['conll_like_result_folder'] + "valid" + os.sep +
                    "epoche_" + str(epoch_number) + ".txt")

                if f1_dictionary['best'] < float(f1_valid):
                    f1_dictionary['epoche'] = epoch_number
                    f1_dictionary['best'] = float(f1_valid)

                if values["best"] < correctly_predicted_tokens:
                    values["epoche"] = epoch_number
                    values["best"] = correctly_predicted_tokens

                #print ("Number of correctly predicted tokens -test "+str(correctly_predicted_tokens))

                print("NEW EPOCHE" + " " + str(epoch_number))

                print("Current F1 on train" + " " + str(f1_train))
                print("Current F1 on valid" + " " + str(f1_valid))
                print("Current F1 on test" + " " + str(f1))

                print("Current F1 best (validation): ")
                print(f1_dictionary)

        shutil.rmtree(parameters['conll_like_result_folder'])
        return parameters, dataset, f1_dictionary['best']

    else:
        ########
        # CRF
        ########

        from cliner.feature_extraction.features import extract_features

        # vectorize tokenized sentences
        text_features = extract_features(train_sents)
        # type(text_features): <type 'list'>

        # Collect list of feature types
        enabled_features = set()
        for sf in text_features:
            for wf in sf:
                for (feature_type, instance), value in wf.items():
                    if feature_type.startswith('prev'):
                        feature_type = 'PREV*'
                    if feature_type.startswith('next'):
                        feature_type = 'NEXT*'
                    enabled_features.add(feature_type)
        enabled_features = sorted(enabled_features)

        # Vectorize features
        vocab = DictVectorizer()
        flat_X_feats = vocab.fit_transform(flatten(text_features))
        X_feats = reconstruct_list(flat_X_feats,
                                   save_list_structure(text_features))

        # vectorize IOB labels
        Y_labels = [[tag2id[y] for y in y_seq] for y_seq in train_labels]

        assert len(X_feats) == len(Y_labels)
        for i in range(len(X_feats)):
            assert X_feats[i].shape[0] == len(Y_labels[i])

        # if there is specified validation data, then vectorize it
        if val_sents:
            # vectorize validation X
            val_text_features = extract_features(val_sents)
            flat_val_X_feats = vocab.transform(flatten(val_text_features))
            val_X = reconstruct_list(flat_val_X_feats,
                                     save_list_structure(val_text_features))
            # vectorize validation Y
            val_Y = [[tag2id[y] for y in y_seq] for y_seq in val_labels]

        # if there is specified test data, then vectorize it
        if test_sents:
            # vectorize test X
            test_text_features = extract_features(test_sents)
            flat_test_X_feats = vocab.transform(flatten(test_text_features))
            test_X = reconstruct_list(flat_test_X_feats,
                                      save_list_structure(test_text_features))
            # vectorize test Y
            test_Y = [[tag2id[y] for y in y_seq] for y_seq in test_labels]
        else:
            test_X = None
            test_Y = None

    sys.stdout.write('\ttraining classifiers %s\n' % p_or_n)

    if use_lstm:
        # train using lstm
        clf, dev_score = keras_ml.train(X_seq_ids,
                                        Y_labels,
                                        tag2id,
                                        len(vocab),
                                        val_X_ids=val_X,
                                        val_Y_ids=val_Y,
                                        test_X_ids=test_X,
                                        test_Y_ids=test_Y)
    else:
        # train using crf
        from machine_learning import crf
        clf, dev_score = crf.train(X_feats,
                                   Y_labels,
                                   val_X=val_X,
                                   val_Y=val_Y,
                                   test_X=test_X,
                                   test_Y=test_Y)

    return vocab, clf, dev_score, enabled_features
예제 #9
0
    def __generic_first_train(self,
                              p_or_n,
                              text_features,
                              iob_labels,
                              do_grid=False):
        '''
        Model::__generic_first_train()

        Purpose: Train that works for both prose and nonprose

        @param p_or_n.        <string> either "prose" or "nonprose"
        @param text_features. <list-of-lists> of feature dictionaries
        @param iob_labels.    <list> of "I", "O", and "B" labels
        @param do_grid.       <boolean> indicating whether to perform grid search
        '''

        # Must have data to train on
        if len(text_features) == 0:
            raise Exception('Training must have %s training examples' % p_or_n)

        # Vectorize IOB labels
        Y_labels = [IOB_labels[y] for y in iob_labels]

        # Save list structure to reconstruct after vectorization
        offsets = save_list_structure(text_features)

        if globals_cliner.verbosity > 0:
            print('\tvectorizing features (pass one) ' + p_or_n)

        #X = reconstruct_list(flatten(text_features), offsets)
        #Y = reconstruct_list(        Y_labels      , offsets)
        # for a,b in zip(X,Y):
        #    for x,y in zip(a,b):
        #        print y
        #        #print filter(lambda t:t[0]=='word', x.keys())
        #        print x.keys()
        #        print
        #    print '\n\n\n'

        # Vectorize features
        dvect = DictVectorizer()
        X_feats = dvect.fit_transform(flatten(text_features))

        # CRF needs reconstructed lists
        if self._crf_enabled:
            X_feats = reconstruct_list(list(X_feats), offsets)
            Y_labels = reconstruct_list(Y_labels, offsets)
            lib = crf
        else:
            lib = sci

        if globals_cliner.verbosity > 0:
            print('\ttraining classifiers (pass one) ' + p_or_n)

        # for i,X in enumerate(X_feats):
        #    for j,x in enumerate(X):
        #        print x, '\t', Y_labels[i][j]
        #    print
        # exit()

        # Train classifier
        clf = lib.train(X_feats, Y_labels, do_grid)

        return dvect, clf
예제 #10
0
    def __second_predict(self, chunked_sentences, inds_list):

        # If first pass predicted no concepts, then skip
        # NOTE: Special case because SVM cannot have empty input
        if sum([len(inds) for inds in inds_list]) == 0:
            print("first pass predicted no concepts, skipping second pass")
            return []

        # Create object that is a wrapper for the features
        if globals_cliner.verbosity > 0:
            print('\textracting  features (pass two)')

        print('\textracting  features (pass two)')

        # Extract features
        text_features = [
            feat_obj.concept_features(s, inds)
            for s, inds in zip(chunked_sentences, inds_list)
        ]
        flattened_text_features = flatten(text_features)

        print('\tvectorizing features (pass two)')

        if globals_cliner.verbosity > 0:
            print('\tvectorizing features (pass two)')

        # Vectorize features
        vectorized_features = self._second_vec.transform(
            flattened_text_features)

        if globals_cliner.verbosity > 0:
            print('\tpredicting    labels (pass two)')

        # Predict concept labels
        out = sci.predict(self._second_clf, vectorized_features)

        # Line-by-line processing
        o = list(out)
        classifications = []
        for lineno, inds in enumerate(inds_list):

            # Skip empty line
            if not inds:
                continue

            # For each concept
            for ind in inds:

                # Get next concept
                concept = reverse_concept_labels[o.pop(0)]

                # Get start position (ex. 7th word of line)
                start = 0
                for i in range(ind):
                    start += len(chunked_sentences[lineno][i].split())

                # Length of chunk
                length = len(chunked_sentences[lineno][ind].split())

                # Classification token
                classifications.append(
                    (concept, lineno + 1, start, start + length - 1))

        # Return classifications
        return classifications