def score1B(sim, J_pred): J_true = len(sim.phi) return score1B_base(J_true, J_pred)
def score1B(sim, est): J_true = len(sim.phi) J_pred = len(est.phi) return score1B_base(J_true, J_pred)
def score1B(sim, cluster_table): J_true = len(sim.phi) J_pred = len(cluster_table) return score1B_base(J_true, J_pred)
def score1B(sim, loci_table): J_true = len(sim.phi) J_pred = loci_table.ccube_ccf_mean.nunique() return score1B_base(J_true, J_pred)
row_list.append(J_true) input_filename = '{}/input_t.tsv'.format(folder_path) input_df = pd.read_csv(input_filename, sep='\t') row_list.append(input_df.purity.mean()) row_list.append(info_df.perc_dip.mean()) row_list.append(folder_path.split('_')[-1]) row_list.append(info_df.median_depth.mean()) (ll_ratio, pval, J_pred, phi_pred_values, weights_pred, pred_cluster_assign, pred_subclonal, pred_profile, pred_signatures, pred_signatures_mut, est_dist, runtime) = \ method_function_dict[method](folder_path) row_list.append(J_pred) row_list.append(ll_ratio) row_list.append(pval) if J_pred is not None: row_list.append(score1B_base(J_true, J_pred)) else: row_list.append(np.nan) if phi_pred_values is not None: row_list.append( score1C_base(phi_true_values, phi_pred_values, weights_true, weights_pred)) else: row_list.append(np.nan) if pred_cluster_assign is not None: ordered_table = pd.merge(pred_cluster_assign, true_cluster_assign, on='mutation_id', how='inner') if len(true_cluster_assign) < 20000: row_list.append(
def score1B(sim, loci_table): J_true = len(sim.phi) J_pred = loci_table[loci_table.cluster > 0].cluster.nunique() return score1B_base(J_true, J_pred)