def feature_selection(features, targets, dataset, target, dt, knn, svm): [known_dataset, known_targets, unk] = split_dataset(dataset, targets) known_targets = np.asarray(known_targets) nr_times = int(math.floor(TOP_FEATURES_PERCENTAGE_THRESHOLD * len(features))) if target == 'civil': ssa_features = get_best(civil_all, civil_all_x, civil_all_y, nr_times) else: ssa_features = get_best(highval_all, highval_all_x, highval_all_y, nr_times) sf = SelectedFeatures(known_dataset, known_targets, ssa_features, features) ssa_dataset = sf.extract_data_from_selected_features() std = StandardizedData(known_targets, ssa_dataset) ssa_dataset_scaled, known_targets_scaled = std.split_and_standardize_dataset() assert not set(known_targets).isdisjoint(known_targets_scaled) file_name = "ensemble_single_" + target + ".txt" for i in range(100): cv10_ensemble(ssa_dataset, known_targets, ssa_dataset_scaled, dt, knn, svm, prt=True, file_name=file_name) print '####### FEATURES ####### %d \n %s' % (len(ssa_features), str(ssa_features))
def feature_selection(features, targets, dataset, ids, target, one_fold_measures, standardize=False): [known_dataset, known_targets, unk] = split_dataset(dataset, targets) known_targets = np.asarray(known_targets) nr_times = int(math.floor(TOP_FEATURES_PERCENTAGE_THRESHOLD * len(features))) if target == 'civil': ssa_features = get_best(civil_all, civil_all_x, civil_all_y, nr_times) else: ssa_features = get_best(highval_all, highval_all_x, highval_all_y, nr_times) sf = SelectedFeatures(known_dataset, known_targets, ssa_features, features) ssa_dataset = sf.extract_data_from_selected_features() if standardize: std = StandardizedData(known_targets, ssa_dataset) ssa_dataset, known_targets = std.split_and_standardize_dataset() cv10(ssa_dataset, known_targets, ids, one_fold_measures) print '####### FEATURES ####### %d \n %s' % (len(ssa_features), str(ssa_features))