def post(self): f = request.files['file-name'] basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) sents_in_summary = 5 summary_string = extract(file_path) doc = nlp(summary_string) text = generate_summary(doc, sents_in_summary) print(text) headers = {'Content-Type': 'text/html'} try: if (request.form["param"] == "1"): return jsonify({ "data": { "summary": text, }, "from": "summarizer", }) except: return make_response( render_template('summarizer.html', text_data=text, user_name=session['user_name'], initials=session['initials'], title="Summarize Text"), 200, headers)
def post(self): f = request.files['file-name'] basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) reg_dic = extract(file_path) senti_output = predict(reg_dic, True) print(senti_output) headers = {'Content-Type': 'text/html'} try: if (request.form["param"] == "1"): return jsonify({ "data": { "sentiment_analysis": senti_output, }, "from": "sentiment_analysis", }) except: return make_response( render_template('sentimental.html', text_data=senti_output, user_name=session['user_name'], initials=session['initials'], title="Feedback Form"), 200, headers)
def post(self): print(type(request)) f = request.files['file-name'] # print(request.form["param"]) # print(type(request.form['param'])) basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) resume_string = extract(file_path) dic = dict() nlp = spacy.load('en') dic = transform(dic, nlp, resume_string) for x in dic[0]: if type(dic[0][x]) == set: dic[0][x] = list(dic[0][x]) # dic[0] is tuple of lists(which contains key-value pair) print('DATA CONTENT OF DIC[0]', dic[0]) headers = {'Content-Type': 'text/html'} keys = [] values = [] count = 0 with open('top_skills.csv', 'r') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: if count == 0: keys = row count = count + 1 else: values = row print('keys', keys) print('values', values) skills = [] for i in range(len(keys)): skills.append([keys[i], values[i]]) print('skills', skills) try: if (request.form["param"] is not None and request.form["param"] == "1"): return jsonify({ "data": { "resume_data": dic[0], "top_skills": skills, }, "from": "resume" }) except: return make_response( render_template('resume.html', text_data=dic[0], skills=skills, user_name=session['user_name'], initials=session['initials'], title="Resume"), 200, headers)
def post(self): f = request.files['file-name'] basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) reg_dic = extract(file_path) senti_output = predict(reg_dic, True) print(senti_output) headers = {'Content-Type': 'text/html'} return make_response( render_template('sentimental.html', text_data=senti_output), 200, headers)
def post(self): f = request.files['file-name'] basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) reg_dic = extract(file_path) if classify(reg_dic) == 1: senti_output = predict(reg_dic, True) print(senti_output) headers = {'Content-Type': 'text/html'} # return make_response(render_template('sentimental.html',text_data=senti_output),200,headers) return redirect(url_for('sentimental', text_data=senti_output), code=307) elif classify(reg_dic) == 2: dic = dict() nlp = spacy.load('en') dic = transform(dic, nlp, reg_dic) for x in dic[0]: if type(dic[0][x]) == set: dic[0][x] = list(dic[0][x]) # dic[0] is tuple of lists(which contains key-value pair) print('DATA CONTENT OF DIC[0]', dic[0]) headers = {'Content-Type': 'text/html'} keys = [] values = [] count = 0 with open('top_skills.csv', 'r') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: if count == 0: keys = row count = count + 1 else: values = row print('keys', keys) print('values', values) skills = [] for i in range(len(keys)): skills.append([keys[i], values[i]]) print('skills', skills) # return make_response(render_template('resume.html',text_data=dic[0],skills=skills),200,headers) return redirect(url_for('resume', text_data=dic[0], skills=skills), code=307) else: output = 3 headers = {'Content-Type': 'text/html'} return make_response( render_template('classifier.html', text_data=output), 200, headers)
def post(self): f = request.files['file-name'] basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) sents_in_summary = 5 summary_string = extract(file_path) doc = nlp(summary_string) text = generate_summary(doc, sents_in_summary) print(text) headers = {'Content-Type': 'text/html'} return make_response( render_template('summarizer.html', text_data=text), 200, headers)
def post(self): f = request.files['file-name'] basepath = os.path.dirname(__file__) file_path = os.path.join('uploads', secure_filename(f.filename)) print(file_path) f.save(file_path) reg_dic = extract(file_path) if classify(reg_dic) == 1: senti_output = predict(reg_dic, True) print(senti_output) headers = {'Content-Type': 'text/html'} try: if (request.form["param"] == "1"): return jsonify({ "data": { "sentiment_analysis": senti_output, }, "from": "sentiment_analysis", }) except: return redirect(url_for('sentimental', text_data=senti_output, user_name=session['user_name'], initials=session['initials'], title="Feedback Form"), code=307) elif classify(reg_dic) == 2: dic = dict() nlp = spacy.load('en') dic = transform(dic, nlp, reg_dic) for x in dic[0]: if type(dic[0][x]) == set: dic[0][x] = list(dic[0][x]) print('DATA CONTENT OF DIC[0]', dic[0]) headers = {'Content-Type': 'text/html'} keys = [] values = [] count = 0 with open('top_skills.csv', 'r') as csvfile: csvreader = csv.reader(csvfile) for row in csvreader: if count == 0: keys = row count = count + 1 else: values = row print('keys', keys) print('values', values) skills = [] for i in range(len(keys)): skills.append([keys[i], values[i]]) print('skills', skills) try: if (request.form["param"] == "1"): return jsonify({ "data": { "resume_data": dic[0], "top_skills": skills, }, "from": "resume" }) except: return redirect(url_for('resume', text_data=dic[0], skills=skills, user_name=session['user_name'], initials=session['initials'], title="Resume"), code=307) else: output = 3 headers = {'Content-Type': 'text/html'} try: if request.form["param"] == "1": return jsonify({ "data": { "classifier_data": output }, "from": "classifier" }) except: return make_response( render_template('classifier.html', text_data=output, user_name=session['user_name'], initials=session['initials'], title="Classify Form"), 200, headers)