parameter_search_grid_full = product([ expand({ "embedding_dimension": 20 }), expand({ "n_feature_maps_w1": range(5, 12+1, 1), "n_feature_maps_w2": range(20, 30+1, 1), "n_feature_maps_d1": range(20, 30+1, 1), }), expand({ "kernel_width_w1": range(5, 15+1), "kernel_width_w2": range(5, 10+1), "kernel_width_d1": range(5, 15+1), }), expand({ "k_max_w1": 7, "k_max_w2": 5, "k_max_d1": 5, }), expand({ "dropout": True, "n_epochs": 100000, "adagrad_gamma": 0.01, "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "24:00:00", "n_classes": 2, "pmem": "6gb", "ppn": 2, }) ])
parameter_search_grid_full = product([ expand({"embedding_dimension": 20}), expand({ "n_feature_maps_w1": range(5, 12 + 1, 1), "n_feature_maps_w2": range(20, 30 + 1, 1), "n_feature_maps_d1": range(20, 30 + 1, 1), }), expand({ "kernel_width_w1": range(5, 15 + 1), "kernel_width_w2": range(5, 10 + 1), "kernel_width_d1": range(5, 15 + 1), }), expand({ "k_max_w1": 7, "k_max_w2": 5, "k_max_d1": 5, }), expand({ "regularizer": [1e-4, 5e-3, 1e-3], "dropout": True, "n_epochs": 100000, "adagrad_gamma": 0.01, "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "24:00:00", "n_classes": 2, "pmem": "6gb", "ppn": 2, }) ])
parameter_search_grid = product([ expand({ "embedding_dimension": [20, 40] }), expand({ "n_feature_maps_w1": [10, 20], "n_feature_maps_w2": [10, 20], "n_feature_maps_d1": [10, 20], }), expand({ "kernel_width_w1": [7], "kernel_width_w2": [5], "kernel_width_d1": [3, 5], }), expand({ "k_max_w1": [8], "k_max_w2": [6], "k_max_d1": [3, 5], }), expand({ "dropout": [True, False], "n_epochs": 10000, "adagrad_gamma": 0.01, "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "10:00:00", "n_classes": 2, "pmem": "4gb", "ppn": 4, }) ])
parameter_search_grid = product([ expand({"embedding_dimension": [20, 40]}), expand({ "n_feature_maps_w1": [10, 20], "n_feature_maps_w2": [10, 20], "n_feature_maps_d1": [10, 20], }), expand({ "kernel_width_w1": [7], "kernel_width_w2": [5], "kernel_width_d1": [3, 5], }), expand({ "k_max_w1": [8], "k_max_w2": [6], "k_max_d1": [3, 5], }), expand({ "dropout": [True, False], "n_epochs": 10000, "adagrad_gamma": 0.01, "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "10:00:00", "n_classes": 2, "pmem": "4gb", "ppn": 4, }) ])
parameter_search_grid_full = product([ expand({ "embedding_dimension": 30 }), expand({ "n_feature_maps_w1": range(5, 25+1, 3), "n_feature_maps_w2": range(5, 25+1, 3), "n_feature_maps_d1": range(5, 25+1, 3), }), expand({ "kernel_width_w1": range(3, 7), "kernel_width_w2": range(3, 7), "kernel_width_d1": range(3, 7), }), expand({ "k_max_w1": range(2, 8, 2), "k_max_w2": range(2, 6, 2), "k_max_d1": range(2, 4), }), expand({ "dropout": [True, False], "n_epochs": 10000, "adagrad_gamma": 0.01, "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "10:00:00", "n_classes": 2, "pmem": "4gb", "ppn": 4, }) ])
parameter_search_grid_full = product([ expand({"embedding_dimension": 30}), expand({ "n_feature_maps_w1": range(5, 25 + 1, 3), "n_feature_maps_w2": range(5, 25 + 1, 3), "n_feature_maps_d1": range(5, 25 + 1, 3), }), expand({ "kernel_width_w1": range(3, 7), "kernel_width_w2": range(3, 7), "kernel_width_d1": range(3, 7), }), expand({ "k_max_w1": range(2, 8, 2), "k_max_w2": range(2, 6, 2), "k_max_d1": range(2, 4), }), expand({ "dropout": [True, False], "n_epochs": 10000, "adagrad_gamma": 0.01, "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "10:00:00", "n_classes": 2, "pmem": "4gb", "ppn": 4, }) ])
parameter_search_grid = product([ expand({ "embedding_dimension": 20 }), expand({ "n_feature_maps_w1": 10, "n_feature_maps_w2": 20, "n_feature_maps_d1": 20, }), expand({ "kernel_width_w1": 7, "kernel_width_w2": 5, "kernel_width_d1": 3, }), expand({ "k_max_w1": 8, "k_max_w2": 6, "k_max_d1": 3, }), expand({ "regularizer": [1e-4, 5e-4, 1e-3], "dropout_input": [True, False], "fully_connected_layer": [True, False], "n_epochs": 10000, "adagrad_gamma": [0.005, 0.01, 0.02], "validation_frequency": 50, "save_frequency": 50, "batch_size": 50, "walltime": "24:00:00", "n_classes": 2, "pmem": "6gb", "ppn": 1, }) ])