def test_convert_to_list(self): output = convert_to_list(self.input_dict) print output np.testing.assert_array_equal(output, self.output_list)
def cluster(final_data_dict, cluster_range, list_or_dict): final_data_list= clustering_module.convert_to_list(final_data_dict) respondent_IDs = np.array(map(int, final_data_dict.keys())) feature_names = final_data_dict.values()[0].keys() final_data_list_imputed = clustering_module.preprocess(final_data_list) Scaler = MinMaxScaler() final_data_list_scaled = Scaler.fit_transform(final_data_list_imputed) #Transformed is distance of each respondent from each cluster center #Predicted is the cluster membership of each respondent merging_list = clustering_module.convert_to_list(final_data_dict,remove_NaN=0 ) data = list(merging_list) ignore_set_added = set(['ids']) for num_clusters in cluster_range: transformed, predicted, score = clustering_module.clustering(final_data_list_scaled, num_clusters) cluster_name = "%s_clusters" % num_clusters ignore_set_added.add(cluster_name) data, feature_names = clustering_module.add_new_data_to_rows(predicted, data, feature_names, [cluster_name]) data, feature_names = clustering_module.add_new_data_to_rows(respondent_IDs, data, feature_names, ["ids"], "before") if list_or_dict == "dict": temp = dictionary_conversion.create_dictionary(data, feature_names) num_converted = dictionary_conversion.convert_values_to_int(temp) #Set of features that should be different due to being categorical ignore_set_changed = set(['busgrn', 'peopgrn', 'sex', 'race', 'topprob1', 'topprob2']) verdict = compare_respondent_dicts(respondent_IDs, num_converted, final_data_dict, ignore_set_changed, ignore_set_added) return num_converted, verdict elif list_or_dict == "list": return data, feature_names